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ABSTRACT
Many real-world sequential decision-making settings involve
human agents who make decisions having access to informa-
tion that may be unavailable to artificial, automated sys-
tems. Standard reinforcement learning (RL) methods do
not usually model human behavior and, almost invariably,
attempt to fully replace the human component with a fully
automated agent, which we call human-replacing agent (HR
agent). In this paper, we propose the human-assisted agent
(HA agent), which takes the natural agent’s decision x′ as a
suggestion to decide a new treatment x maximizing the tar-
get outcome – that is, what the target outcome would have
been, counterfactually, had the treatment been X = x, given
that in fact X = x′. A proper causal language is required to
support this mode of reasoning and allow valid counterfac-
tual inference. We model this decision-making setting using
the language of structural causal models [Pearl, 2000] and
formulate the HA agent in counterfactual semantics. We
identify a general class of SCMs where an HA agent can
leverage MDP machinery and find a strategy that provably
dominates previously known strategies, including HR-based
ones. When the (counterfactual) Markov property does not
hold, we equip the HA agent with an augmented POMDP
capability. We further characterize the conditions under
which natural agents’ decisions do not offer valuable infor-
mation to the task, which means that the performance of
HA and HR agents coincide and autonomy can be reached.

CCS Concepts
•Computing methodologies → Causal reasoning and
diagnostics;

Keywords
Causal Inference; Reinforcement Learning; Markov Decision
Process

1. INTRODUCTION
We study decision-making settings where a human be-

ing (also called natural agent) makes decisions in an envi-
ronment and can be influenced by multiple exogenous fac-
tors. These factors may have an effect on the agent’s deci-
sions consciously or subconsciously and are not necessarily
recorded or accessible by other agents other than the origi-
nal decision-maker. For example, consider a physician who
decides the dose of a drug in different time slots (treatment)
according to his perception of the patient’s conditions (e.g.,

balance, dilation of the pupil, mood). With the accumu-
lation of data and processing power, hospitals are increas-
ingly interested in deploying computer agents to perform
automatic diagnosis and planning of patients’ treatments.
One of the reasons is that it is not unreasonable to expect
that physicians may be bound to find sub-optimal policies
given their inability of quantifying uncertainty and process-
ing huge amounts of data. On the other hand, however,
automated systems may not have the necessary communi-
cation skills to fully access patients’ conditions, thus being
potentially unable to find an optimal policy. The natural
question that arises, in this case, is whether it is justifiable
to design an agent to utilize the benefit of automation and
data analysis while leveraging the physician’s experiences;
if the answer is positive, what would be the principles that
should drive the construction of such a system.

We propose the design of a human-assisted agent (HA
agent) that takes the physician’s decision as a suggestion and
decides a possibly new course of treatment. The challenge of
designing such an agent arises dues to the counterfactual na-
ture of the problem, that is, what chances of recovery would
a patient have had she taken a different treatment X = x,
given that in fact, she is under treatment X = x′ [8, Ch. 1].
This counterfactual quantity seems to defy empirical expe-
riences because we can never rerun history and administer a
different level of treatment x for those who already received
it at level x′. Performing this type of reasoning relies on
the introduction of causal inference machinery [8, Sec. 7.1].
We will use Structure Causal Models (SCMs) as the basis of
our analysis so as to be able to reason with counterfactual
statements and perform inferences of key concepts, includ-
ing counterfactual independences, conditional interventions,
and expected outcomes.

Connections between the causal inference and reinforce-
ment learning (RL) were first established in [1]. In this set-
ting, Bareinboim et al. implicitly described an HA agent
for Multi-Armed Bandits (MABs) where unobserved con-
founders (UCs) affect the agent’s decision process It’s well
understood that MABs are a rather simplistic model where
rewards and actions at different rounds are assumed to be
mutually independent. Our approach here focuses on a more
general decision-making setting where the action not only af-
fects the immediate reward, but also the future state of the
agent. Finding the optimal policy in such an environment
requires non-trivial analysis of independence relationships
among counterfactual variables, which hold by default in [1].
We will show that subtle mistakes could occur in designing
inference algorithms for the HA agent when the recognition



of these independence relations are not explicit, which in
turn would translate into a lack of convergence.

Counterfactual inference has been studied and applied in
the context of RL under the rubrics of off-policy learning.
[9, 5] applied the inverse propensity score weighting to esti-
mate the effect of a new policy using samples collected by the
agent running a different behavioral policy (the physician’s
policy in the medical treatment example). Most off-policy
learning methods assume that the behavioral policy and the
target policy share the same state-action spaces, which in
practice, however, is not rarely violated. For instance, in
the medical example, the physician could observe states un-
observed to the learning agent (e.g., balance, mood). Also,
current RL methods focus almost exclusively on human-
replacing agents (HR agents) that are designed to substi-
tute the existent natural agent from the environment. From
a causal perspective, off-policy methods estimate the aver-
age effect of a treatment x on the general population, instead
of the effect in the specific population that is currently un-
der treatment x′; the latter might possess distinct needs and
dispositions that make them react differently to a different
treatment x than a randomly selected subject would.

In this paper, we model this decision setting with SCMs
and analyze HA agents with formal counterfactual language.
Specifically, our contributions are as follow:

1. We first show that HR agents are not guaranteed to be-
have optimally in an environment where natural agents
are present (e.g., social and medical settings), and de-
cisions are driven by unobserved confounders.

2. We identify a class of models where the optimal pol-
icy of the HA agent can be obtained through a sim-
ple modification of MDP algorithms, contrasting with
standard HR agents.

3. For systems not contained in the above class (i.e., when
the counterfactual Markov property does not hold, to
be defined), we propose a modified POMDP planning
algorithm to find the optimal policy of HA agents.

4. We prove a general condition where it is safe to replace
the natural agent with a standard agent. The proof
confirms the intuition that RL algorithms do not need
input from the natural agent only when it has superior
capabilities for observing all the latent states.

2. PRELIMINARIES AND NOTATIONS
In this section, we introduce the basic notations and defi-

nitions used throughout the paper. We will consistently use
the abbreviation P (x) for the probabilities P (X = x), where
x is an arbitrary value.

We describe the environment using the Structural Causal
Models (SCMs) defined in [8, pp. 203-205]. SCMs gives for-
mal meaning for fundamental concepts, including confound-
ing, observational and experimental distributions, and coun-
terfactuals. We define SCMs in the sequel.

Definition 1. (SCM [8]). A structural causal model (SCM)
M is a 4-tuple 〈U, V, F, P (u)〉 where:

1. U is a set of exogenous (unobserved) variables, that are
determined by factors outside of the model,

2. V is a set {V1, V2, . . . , Vn} of endogenous (observed)
variables that are determined by variables within the
model (i.e., by the variables in U ∪ V ),

3. F is a set of function {f1, f2, . . . , fn} such that each fi
is a mapping from the respective domain of Ui∪PAi to
Vi, where Ui ⊆ U and PAi ⊆ V \Vi and the entire set
F forms a mapping from U to V . In other words, each
fi, vi ← fi(pai, ui), i = 1, . . . , n, assigns a value to Vi
that depends on the valus of the select set of variables,

4. P (u) is a probability distribution over the exogenous.

Each SCM M is associated with a directed acyclic graph
(DAG) G, where solid nodes correspond to endogenous vari-
ables V , empty nodes correspond to exogenous variables U ,
and edges represent functional relationships (see Fig. 1).

The mathematical operator do(X = π(w)), defined in [8],
denotes an intervention where the values of X are set ac-
cording to an arbitrary function π(w), regardless of how the
values of X are ordinarily determined in the model1. We
use a causal effect P (Y = y|do(X = π(w))) to represent the
response of a variable Y to the intervention do(X = π(w)).
This causal effect is sometimes denoted by a counterfactual
quantity P (YX=π(w) = y). The formalism of SCMs allows
a probabilistic measure over counterfactual variables, i.e.,
P (YX=π(w) = y) =

∑
{u∈E} P (u), where E is a set of realiza-

tions of U compatible with Y = y in the post-interventional
model under do(X = π(w)) [8]. If π(w) = x where x is
an arbitrary constant, the intervention do(X = x) is called
atomic. We will use the abbreviation P (yx) for distributions
P (YX=x = y).

In this paper, we consider a sequential decision prob-
lem, where at time t = 1, 2, . . . , the agent observes the
state S(t) = s(t), performs an action do(X(t) = x(t)), re-

ceives an reward Y (t) = y(t), and moves to the next state
S(t+1) = s(t+1). We will consistently use the abbreviation
x([1,t]) for a sequence {x(1), x(2), . . . , x(t−1)}. Let h(t) be the

observable history up to time t, H(t) be the set of all possi-
ble histories up to time t, and let S,X, Y be finite domains
for (respectively) states, actions and rewards. In causal se-

mantics, h(t) = {s(0), s
(1)

x(1)
, . . . , s

(t)

x([1,t−1])}, where s
(t)

x([1,t−1]

represents the event S(t) = s(t) after past actions x([1,t−1]).
Define a decision rule at time t to be a distribution func-
tion π(t) := H(t) × X → [0, 1]. A policy Π for an agent is

a sequence of policies, that is, Π = π([1,t]). A policy Π is
called a stationary Markov policy if π(t) = π at any time
t, where π := S × X → [0, 1]. We use the decision rule π
in short for such a stationary Markov policy. We define the
expected discounted cumulative rewards starting from state
s(1) under the policy Π by

V Π(s(1)) = E[

∞∑
t=0

γtY
(t)

X([1,t−1])=π([1,t−1]) ],

where the subscript X([1,t−1]) = π([1,t−1]) stands for the in-
tervention do(X(1) = π(1), . . . , X(t−1) = π(t−1)), and γ ∈
[0, 1) is a discount factor. The goal is to find an optimal
policy Π∗ maximizing the expected discounted cumulative
rewards.

We use the formalism of finite Markov decision processes
as the main tool to solve for the optimal policy.

1Ordinarily here is also called “naturally” in the causal in-
ference literature, and represents a “behavioral” policy.
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Figure 1: (a) The SCM for the medical treatment example described in Sec. 3, denoted by MDPUC. (b) The SCM with which

the HA agent cannot be cast to a MDP, due to the confounding edge S(t), X(t).

Definition 2. (MDP [2]). A finite Markov decision pro-
cess (MDP) is a 5-tuple 〈S,X, Y, T,R〉 in which S is a finite
set of states; X a finite set of actions; Y a set of rewards; T
a transition distribution defined as T : S ×X × S → [0, 1];
and R a reward distribution defined as R : S×X×Y → [0, 1].

We can model a decision setting as a MDP if it is Markov,
i.e, the result of an action does not depend on the previous
actions and observations (history), but only depends on the
current observation. A number of efficient algorithms have
been studied to solve MDPs, including value iteration [11]
for offline planning problems and MORMAX [12] for online
learning problems.

A system might be no longer Markov if unobserved ele-
ments of the state affect the next state. To find an optimal
solution in this case, one popular approach is to model it
as a partially observable MDP (POMDP), where the agent

does not access the state S(t) = s(t) but a noisy observation
O(t) = o(t).

Definition 3. (POMDP [4]). A finite Markov decision
process (MDP) is a 7-tuple 〈S,X, Y,O, T,R,Ω〉 in which
S,X, Y, T,R are the same defined in Def. 2; O a finite set
of observations; and Ω an observation function defined as
Ω : S ×X ×O → [0, 1].

Planning on a POMDP is equivalent to solving for a MDP
with a continous state space, which is intractible in gen-
eral [6]. Approximation planning algorithms, e.g., incremen-
tal pruning [3], which exploits the structure of the optimal
POMDP policy, have been extensively studied and shown
to be efficient, whereas online learning algorithms were not
well understood until recently [10].

3. A MOTIVATING EXAMPLE
We start this section by revisiting the medical treatment

example mentioned in the introduction. A physician treats
a patient who visits the hospital regularly to maintain his
long term health condition. At the t-th visit, the physician
measures the patient’s corticosteroid level S(t) = s(t), s(t) ∈
{0, 1}, where 0 stands for a low and 1 for a high level of corti-

costeroid. She then decides a treatment X(t) = x′(t), x′(t) ∈
{1, 0} (1 for to give the drug, 0 for not to), and then mea-

sures an overall health score Y (t) = y(t), y(t) ∈ {1, 0} (i.e.,
“healthy” and “not healthy”). In reality, the patient’s health

score Y (t) is also affected by a pair of factors U (t) = {M (t), E(t)}
where M (t) = m(t) stands for patient’s psychological sta-
tus (0 for positive, 1 for negative) and E(t) = e(t) stands
for his socioeconomic status (0 for wealthy, 1 for poor).

We model the patient’s longterm health condition by the
discounted cumulative reward with γ = 0.99. The physi-
cian follows a stationary Markov policy πndt where X(t) ←
πndt(s(t),m(t), e(t)). Despite affecting the physician’s deci-

sion, m(t) and e(t) are not recorded in the hospital’s database
due to privacy concerns. The full parametrizations of this
structural model with the reward function P (Y (t) = 1 |
s(t),m(t), e(t), x(t)) and transition function P (S(t+1) = 0 |
s(t), x(t)) is provided in Sec. 6.

Unsatisfied with the condition of the patient, the hospi-
tal decides to replace the physician with a computer agent
(HR agent). Fig. 1(a) shows the SCM of the system from an

agent’s perspective for t = 3, where U (t) is unobserved. At
each visit t, the agent decides a treatment X(t) = x(t) fol-
lowing a policy π(t) given history h(t). Due to the existence
of unobserved variables U (t), we can cast this problem to a
POMDP and solve for the optimal policy. However, with
careful examinations, we find this system is indeed Markov,
i.e.,

Theorem 1. Consider the SCM described in Fig. 1 (a),

starting from an arbitrary state s(1) ∈ S, it satisfies follow-
ing properties:

P

(
s

(t+1)

x([1,t])
| h(t)

)
= P

(
s

(t+1)

x(t)
| s(t)

)
(1)

P

(
y

(t)

x([1,t])
|h(t)

)
= P

(
y

(t)

x(t)
|s(t)

)
. (2)

Proof. Introducing interventions do(X([1,t]) = x([1,t])) is

equivalent to removing all incoming edges of X([1,t]). In
the post-interventional SCM, S(t) becomes the only variable
between S(t+1), Y (t) and past states and actions. There-
fore, S(t+1), Y (t) are d-separated from the history given S(t),
which proves Eqn. 1 and 2.

Thm. 1 says that for the medical treatment example, the
system is Markov for a HR agent. We thus can solve for the
optimal policy for the HR agent with a standard MDP plan-
ning algorithm, and the optimal policy must be a stationary
Markov policy π where π := S → X.

We label the optimal policy learned by a MDP planning
algorithm as mdp, and the one learned by a POMDP plan-
ning algorithm as pomdp. We also include three baseline
policies for comparison: 1. the physician’s current policy
without any intervention (called ndt), 2. a policy picking
the treatment at random (random), and 3. the true optimal
policy learned by an agent who can access all unobserved
information (opt). Fig. 2 shows the cumulative reward and



average reward per episode of these experiments. Somewhat
surprisingly, none of the algorithms is able to learn a rea-
sonable policy – also, the results coincide with the random
policy. Moreover, the ndt policy performs worse than ran-
dom guessing.

The experimental results suggest that the HR agent is not
able to converge to some acceptable policy. This raise the
question of whether a HA agent which, instead of replacing
the physician, takes the physician’s decision as a suggestion
could perform better in this environment. At the t-th visit,
a HA agent observes not only the current state S(t) = s′(t),
but the physician’s decision X(t) = x′(t) as well (but never

U (t)), and finally picks a new treatment X(t) = x(t). Let

h′(t) be the observable history for a HA agent by the time

t wehere h′(t) = h(t) ∪ {x′(1), x
′(2)

x(1)
, . . . , x

′(t)
x([1,t−1])} and let

H ′(t) denote all possible h′(t). A HA agent follows a policy
Π where Π = π([1,t] and π(t) := H ′(t) ×X → [0, 1].

Two natural questions arise at this point: 1. how HA
agent can systematically find an optimal policy; 2. in which
cases an HA agent outperforms an HR agent and a human
agent. Our goal in the remaining of the paper is to answer
these two questions.

4. HUMAN-ASSISTED AGENT AS A MDP
In this section, we study whether (and, if so, how) an HA

agent can be modelled using standard MDP machinery. Our
goal is to construct a transformation of HA agents to MDPs
so as to apply the corresponding MDP algorithms. The goal
then is to analyze the behavior of such mapping in terms of
optimality.

To cast an HA agent to an MDP agent, we first need to
show that the corresponding system is Markov, that is,2

P

(
s

(t+1)

x([1,t])
| h′(t)

)
= P

(
s

(t+1)

x(t)
| s(t), x

′(t)
)

(3)

P

(
y

(t)

x([1,t])
| h′(t)

)
= P

(
y

(t)

x(t)
| s(t), x

′(t)
)
. (4)

We first focus on the system described in the previous sec-
tion, which is called the MDPUC due to the presence of
unobserved confounders (UCs) U(t). Let S,X, Y, U denote

by domains of the state S(t), action X(t), reward Y (t), and
the exogenous variables U (t). We note that a MDPUC run-
ning with a HR agent is a MDP.

Theorem 2. (MDPUC Markovianity) For the MDPUC

starting from an arbitrary state s(1) ∈ S, Eqn. 3 and 4 hold.

We will show next the proof of the above statement. The
proof builds on the graphoid axioms [7], the exclusion re-
strictions rule of SCMs [8, pp. 232], and three axioms of
structural counterfactuals: composition, effectiveness and
reversibility [8, Sec. 7.3.1]. We also build on confounded
components (C-components), a useful concept for operating
SCMs with unobserved confounders ([13]).

Definition 4. (C-component [13]) Let G be a causal dia-
gram such that a subset of its bidirectional dashed edges (con-
nected by exogenous variables) forms a spanning tree over all
endogenous variables in G. Then G is a C-component.

2The variable X taking different values before and after the
conditioning bar (i.e., x′ and x) syntactically exhibits the
counterfactual nature of the problem.

(a) (b)

Figure 2: Average reward per episode plot (left) and cumu-
lative reward plot (right) for medical treatment example.

For example, the SCM described in Fig. 1 contains 3 C-
component: {S(1)}, {X(1), Y (1), S(2)} and {X(2), Y (2), S(3)}
since the variables in each of these components are connected
through bidirected arrows. Every SCM can be uniquely
partitioned into a set of C-components C(1), C(2), . . . , C(K)

where K < ∞. Let U (k) denote by the set of exogenous
variables associated with a C-component C(k). The SCM
assumes that {U (1), U (2), . . . , U (K)} are mutually indepen-
dent in the joint probability P (u). This assumption can
be translated into a probabilistic decomposition formula in
terms of counterfactual statements.

Lemma 1. Given a SCM M〈U, V, F, P (u)〉 with N en-
dogenous variables and K C-components. Let PAX be par-

ents of a variable X, and let Vpa = {V (1)
pa

V (1)
, . . . , V

(N)
pa

V (N)
}.

The joint distribution P (vpa) factorizes according to the prod-
uct:

P (vpa) =

K∏
k=1

P (c(k)
pa ), (5)

where C
(k)
pa denote endogenous variables with parents’ value

fixed in C-component k by C
(k)
pa = {V (1)

pa
V (1)

, . . . , V
(N(k))
pa

V (N(k))
}.

Proof. Let U (k), C(k) be, respectively, exogenous and

endogenous variables of C-component k. A V
(i)
pa

V (i)
in C

(k)
pa

is decided by the function V (i) = f(paV (i) , u(k)) with its
parents’ value fixed at PAV (i) = paV (i) . We can thus write

P (c
(k)
pa ) as:

P (c
(k)
pa ) =

∑
U(k)

N(k)∏
i=1

I{v(i) = f(paV (i) , u
(k))}P (u(k)) (6)

Since U is partitioned into mutually independent subsets
{U (1), U (2), . . . , U (N)}, P (vpa) can be written as

P (vpa) =
∑
U

K∏
j=1

N(j)∏
n=1

I{v(n) = f(paV (n) , u)}P (u(j)).



By moving out U (k) and C(k), this becomes:

P (vpa) =
∑
U(k)

N(k)∏
i=1

I{v(i) = f(paV (i) , u
(k))}P (u(k))

︸ ︷︷ ︸
Part 1

·
∑

U\U(i)

K∏
j=1,j 6=k

N(j)∏
n=1

I{v(n) = f(pa(n), u(n))}P (u(j))

︸ ︷︷ ︸
Part 2

Part 1 is exactly P (s
(j)
pa ) defined in Eqn. 6. By applying

the same procedure for remaining K − 1 C-components, we
obtain Eqn. 5.

Lem. 1 implies a stronger result than the independence
restrictions rule [8, Sec. 7.3], since it shows that all endoge-
nous variables with their parents fixed are independent of
variables with parents fixed in other C-components.

Proof. (Proof of Thm. 2) We will focus on the time
t = 3. The proof for the general case follows naturally.
Consider Fig. 1 which describes MDPUC at time t = 3, we
want to show that:

P

(
s
(3)

x([1,2])
| s(2)

x(1)
, x
′(2)
x(1)

, s
(1)
, x
′(1)
)

= P

(
s
(3)

x(2)
| s(2), x

′(2)
)
, (7)

P

(
y
(2)

x([1,2])
| s(2)

x(1)
, x
′(2)
x(1)

, s
(1)
, x
′(1)
)

= P

(
y
(2)

x(2)
| s(2), x

′(2)
)
. (8)

Since Fig. 1 consists of 3 C-components: S(1), {X(1), Y (1), S(2)}
and {X(2), Y (2), S(3)}, Lem. 1 implies(

s
(3)

x(2),s(2)
, x
′(2)

s(2)
⊥⊥ s(1), x

′(1)

s(1)
, s

(2)

x(1),s(1)

)
, (9)

where s([1,3]), y([1,2]), x([1,2]), x′([1,2]) are arbitrary values. By
composition and weak union axioms, we have(

s
(3)

x(2),s(2)
⊥⊥ s(1), x′(1) | s(2)

x(1)
, x
′(2)

x(1)

)
. (10)

Let x′(1) = x(1) and apply composition and weak union ax-
ioms again. (

s
(3)

x(2),s(2)
⊥⊥ s(1), x(1) | s(2), x′(2)

)
. (11)

Eqn. 11 implies

P

(
s

(3)

x(2),s(2)
| s(2), x′(2)

)
= P

(
s

(3)

x(2),s(2)
| s(2), x′(2), s(1), x(1)

)
.

By Composition axiom, we move x(1) to subscripts.

P

(
s

(3)

x(2),s(2)
| s(2), x′(2), s(1), x(1)

)
= P

(
s

(3)

x(2),s(2)
| s(2)

x(1)
, x
′(2)

x(1)
, s(1), x(1)

)
= P

(
s

(3)

x(2),s(2)
| s(2)

x(1)
, x
′(2)

x(1)

)
.

The last step holds by the independence implied by Eqn. 10.
Since x(1) in Eqn. 10 can be any value, let x(1) = x′(1) and

apply Eqn. 10 again.

P

(
s

(3)

x(2),s(2)
| s(2)

x(1)
, x
′(2)

x(1)

)
= P

(
s

(3)

x(2),s(2)
| s(2)

x(1)
, x
′(2)

x(1)
, s(1), x′(1)

)
= P

(
s

(3)

x([1,2]),s(2)
| s(2)

x(1)
, x
′(2)

x(1)
, s(1), x′(1)

)
.

The last step holds, since s
(3)

x(2),s(2)
= s

(3)

x([1,2]),s(2)
(Exclusion

Restrictions rule). Together, we have

P

(
s

(3)

x(2),s(2)
| s(2), x′(2)

)
= P

(
s

(3)

x([1,2]),s(2)
| s(2)

x(1)
, x
′(2)

x(1)
, s(1), x′(1)

)
. (12)

We can rewrite P

(
s

(3)

x(2),s(2)
| s(2), x′(2)

)
as

∑
x′(1)∈X,s′(1)∈S

P

(
s
(3)

x(2),s(2)
| s(2), x′(2), s′(1), x′(1)

)
︸ ︷︷ ︸

Term1

P

(
s
′(1)

, x
′(1) | s(2), x′(2)

)
. (13)

Some algebra through Composition axiom and Exclusion
Restrictions rule turns Term 1 into:

P

(
s

(3)

x(2),s(2)
| s(2), x′(2), s′(1), x′(1)

)
= P

(
s

(3)

x(2)
| s(2), x′(2), s′(1), x′(1)

)
. (14)

Replace Term 1 with Eqn. 14, Eqn. 13 equals to:

P

(
s

(3)

x(2),s(2)
| s(2), x′(2)

)
=

∑
x′(1)∈X,s′(1)∈S

P

(
s

(3)

x(2)
, s′(1), x′(1) | s(2), x′(2)

)

= P

(
s

(3)

x(2)
| s(2), x′(2)

)
Together with Eqn. 12, we prove Eqn. 7. Eqn. 8 can be
proved with the same steps but replacing s(3) with y(2).

Thm. 2 proves the Markov property for a HA agent – in
words, it says that the history h′(t) is best summarized by
the current state s(t) and the physician’s decision x′(t). We
can then construct a MDP M ′ = 〈S′, X, T,R〉 with an aug-
mented state variable such that S′ = S × X, T and R are
respectively Eqn. 7 and 8. To solve for the optimal policy
for the HA agent in MDPUC is equivalent to solve for the
optimal policy in M ′.

When the full parametrization of MDPUC is provided,
Eqn. 7 and 8 can be calculated through three-step proce-
dure of Abduction, Action and Prediction [8, Sec. 7.1]. In
practice, however, it is often difficult to obtain the distri-
bution of unobserved variables (P (U (t))). In such cases,
Eqn. 7 and 8 can still be obtained through the new ran-
domization procedure introduced in [1]: 1. observe the cur-

rent state s(t) and the physician’s decision x′(t); 2. stop
the action x′(t) and perform a new action x(t) at random;
3. observe outcomes (s(t+1) and y(t)), and record the data



(s(t), x′(t), x(t), s(t+1), y(t)). Furthermore, the counterfactual
representations of Eqn. 7 and 8 also suggest a off-policy
learning method that can be useful to speedup convergence.

Corollary 1. The MDPUC satisfies following statements
for t ≥ 1:

P

(
s

(t+1)

x(t)
, x

(t+1)

x(t)
| s(t), x(t)

)
= P

(
s(t+1), x(t+1) | s(t), x(t)

)
P

(
y

((t)

x(t)
| s(t), x(t)

)
= P

(
y(t) | s(t), x(t)

)
Proof. Since we condition on x(t), the simple application

of the composition axiom [8, pp. 229] removes subscripts on
left-hand side terms for both equations, which are exactly
terms on the right-hand side.

Note that quantities on the right hand side are observational
distributions (without subscripts), which can be obtained by
simply observing physicians naturally acting. In fact, when
x′(t) = x(t), Eqn. 7 and 8 can be estimated without direct
experiments, but through the observational data alone.

Some reader might surmise that the results in Thm. 2 are
immediate by arguing that the physician’s decision x′(t) can
be modeled as an extra state variable X ′(t). The new state
{S(t), X ′(t)}must be Markov, since X ′(t) only depends on in-

dependent local variables except for S(t). It is, therefore, not
necessary, one may conclude, to perform any independence
analysis among counterfactual variables. This statement,
however, is certainly not true. Consider the dynamic sys-
tem shown in Fig. 1(b), which is the same as Fig. 1(a) with

the UC U (t) affecting the current state S(t). Even though
the physician’s decision X(t) = x′(t) is still only affected by
U (t) and S(t), the system is no long Markov for a HA agent.
To witness, the confounding between X(t) and S(t) violates
the independence relation in Eq. 9, which breaks the Marko-
vian property. This means that the SCM in Fig. 1(b) cannot
be cast to a MDP for a HA agent. This example illustrates
that the independence relationships among counterfactual
variables need to be carefully considered when solving se-
quential decision problems in natural settings where UCs
exist. If the system is not Markovian, we have to resort to
a more general formalism that permits such a violation.

5. HUMAN-ASSISTED AGENT AS A POMDP
The Markov property of the sequential decision process

can be violated as the uncertainty of state information grows,
which calls for the formalism of POMDPs. Fig. 3(a) shows
the graphical representation of a prototypical POMDP model.
POMDPs represent one of the most general formalisms for
sequential decision problems. For example, the system in
Fig. 3(a) can be translated into a POMDP by defining the

state S′(t) in the POMDP as S′(t) = {S(t), U (t)} and its

observation O(t) = {S(t)}. For simplicity, we denote the

POMDP state S′(t) by S(t). We focus on the planning prob-
lem for the POMDP. In a POMDP, the outcome of an ac-
tion is related to all history since the POMDP is no longer
Markovian. The solution, proposed in [4], is to introduce a

belief state B(t) storing a probability distribution over the
state space S up to time t given the history H(t) = h(t).

Formally, let h(t) = {o(1), o
(2)

x(1)
, . . . , o

(t)

x([1,t−1])},

B(t)(s(t)) = P

(
s

(t)

x([1,t−1]) | h
(t)

)
(15)

Fig. 3(b) shows the graphical representation of a POMDP
with a standard POMDP agent deployed. At time t, the
agent receives the observation o(t), updates the belief state
B(t), and picks an action based on the belief state. Given the
current belief B(t)(s(t)), the most recent action x(t) and the

most recent observation o(t+1), the belief stateB(t+1)(s(t+1))
is updated by Bayes’ rule:

αP

(
o

(t+1)

x(t)
| s(t+1)

) ∑
s(t)∈S

P

(
s

(t+1)

x(t)
| s(2)

)
B(t)(s(t)) (16)

where α is a normalizing constant.
We next introduce the POMDP formalism for a HA agent.

Following the same idea, we next introduce a belief state
B′(t) storing the belief probability distribution over the state
space S up to time t.

Theorem 3. Given the SCM described in Fig. 3(a), de-
fine the belief state

B′(t)(s(t)) = P

(
s

(t)

x([1,t−1]) | h
′(t)
)
,

where h′(t) = {o(1), x′(t), o
(2)

x(1)
, x
′(2)

x(1)
, . . . , o

(t)

x([1,t−1]) , x
′(t)
x([1,t−1])}.

Given the current belief B′(t)(s(t)), the most recent action

x(t), the most recent physician’s decision x′(t+1), and the
most recent observation o(t+1), the next belief state B′(t+1)(s(t+1))
can be updated by Bayes’ rule:

αP

(
o

(t+1)

x(t)
, x
′(t+1)

x(t)
| s(t+1)

) ∑
s(t)∈S

P

(
s

(t+1)

x(t)
| s(t)

)
B′(t)(s(t)).

where α is a normalizing constant.

Proof. By Bayes’ rule,

B′(t+1)(s(t+1)) = P

(
s

(t+1)

x([1,t])
| o(t+1)

x([1,t])
, x
′(t+1)

x([1,t])
, h′(t)

)
= αP

(
s

(t+1)

x([1,t])
, o

(t+1)

x([1,t])
, x
′(t+1)

x([1,t])
| h′(t)

)
= αP

(
o

(t+1)

x([1,t])
, x
′(t+1)

x([1,t])
| s(t+1)

x([1,t])
, h′(t)

)
P

(
s

(t+1)

x([1,t])
| h′(t)

)
.

A POMDP is Markov if S(t) is observed. By the Markov
property, this turns into:

αP

(
o

(t+1)

x(t)
, x
′(t+1)

x(t)
| s(t+1)

)
P

(
s

(t+1)

x([1,t])
| h′(t)

)
. (17)

By expanding on s
(t)

x([1,t−1]) and the Markov property, P

(
s

(t+1)

x([1,t])
|

h′(t)
)

is equivalent to

∑
s(t)∈S

P

(
s

(t+1)

x([1,t])
| s(t)

x([1,t−1]) , h
′(t)
)
P

(
s

(t)

x([1,t−1]) | h
′(t)
)

=
∑
s(t)∈S

P

(
s

(t+1)

x(t)
| s(t)

)
P

(
s

(t)

x([1,t−1]) | h
′(t)
)
. (18)

Note that P

(
s

(t)

x([1,t−1]) | h′(t)
)

is the current beliefB′(t)(s(t)).

Together with Eqn. 17 and 18, the theorem follows.

Thm. 3 describes the belief update algorithm for a HA agent
in a POMDP environment. Comparing the above formula
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Figure 3: (a) The SCM representation for a POMDP where the human decides for X(t) based on S(t), O(t). (2) The SCM
representation for a POMDP after a standard POMDP agent is deployed.

with Eqn. 16, we find that the physician’s decision x′(t) acts
as if it was an observations. This says that we can solve for
the optimal policy for a POMDP HA agent by constructing a
POMDP with a new observation o′(t+1) = {o(t+1), x′(t+1)}.

The distribution P

(
o

(t+1)

x(t)
, x
′(t+1)

x(t)
| s(t+1)

)
can be calcu-

lated as

P

(
x′(t+1) | s(t+1), o(t+1)

)
P

(
o

(t+1)

x(t)
| s(t)

)
Let Π∗HA,Π

∗
HR denote the optimal policy of, respectively, the

HA agent and the HR agent. Since h(t) ⊂ h′(t), Π∗HA should
always dominate Π∗HR for an arbitrary sequential system
starting from state s(1). We now study the condition when
the HA agent does not outperform the HR agent.

Theorem 4. For a POMDP described in Fig. 3(a) with

a policy Π = π([1,t]) where π(t) := H(t) ×X → [0, 1] starting

from state s(1), the following statement holds:

V Π∗HA(s(1)) = V Π∗HR(s(1)) (19)

Proof. Since Π∗HA always dominates Π∗HR, it suffices to

show the other direction V Π∗HA(s(1)) ≤ V Π∗HR(s(1)). Sup-

pose Π∗HA = π
∗([1,t])
HA ,Π∗HR = π

∗([1,t])
HR , we write V Π∗HA(s(1))

as:

∑
h(t)∈H(t)

∑
x([1,t])∈Xt

∑
y(t)∈Y

y
(t)
P

(
y
(t)

s(t),x(t)

)

P

(
o
(1)

s(1)

) t∏
i=2

P

(
o
(i)

x(i−1),s(i)

)
P

(
s
(i)

s(i−1),x(i−1)

)
t∏

j=1

π
∗(j)
HR

(
x
(j) | h(j)

)

Similarly, we can write V Π∗HR(s(1)) as:

∑
h′(t)∈H′(t)

∑
x([1,t])∈Xt

∑
y(t)∈Y

y
(t)
P

(
y
(t)

s(t),x(t)

)

P

(
o
(1)

s(1)

) t∏
i=2

P

(
o
(i)

x(i−1),s(i)

)
P

(
s
(i)

s(i−1),x(i−1)

)
t∏

j=1

P

(
x
′(j) | h(j)

)
π
∗(j)
HA

(
x
(j) | h′(j)

)

Since h′(t) = h(t) ∪ {x′(1), . . . , x
′(t)
x([1,t−1])}, this turns to

∑
h(t)∈H(t)

∑
x([1,t])∈Xt

∑
y(t)∈Y

y
(t)
P

(
y
(t)

s(t),x(t)

)

P

(
o
(1)

s(1)

) t∏
i=2

P

(
o
(i)

x(i−1),s(i)

)
P

(
s
(i)

s(i−1),x(i−1)

)
∑

x′([1,i])∈Xi

t∏
j=1

P

(
x
′(j) | h(j)

)
π
∗(j)
HA

(
x
(j) | h′(j)

)
︸ ︷︷ ︸

Term1

Term 1 defines a policy of the HR agent after summing out
x′([1,t]), which we denote by ΠHR. Since Π∗HR is the optimal
policy for the HR agent, it follows that

V Π∗HA(s(1)) = V ΠHR(s(1)) ≤ V Π∗HR(s(1)).

Thm. 4 concerns with the value of information of the hu-
man’s decision. When the state spaces of the human and
the agent coincide, i.e., the human does not observe more
information than the agent, the optimal performance of a
HR agent matches a HA agent. Therefore, it is completely
safe under these conditions to replace the human with an
automated agent. In general, however, even when biased
(and possibly worse than a random policy), the information
coming from the human decision-maker allows an HA agent
to dominate any traditional HR agent.

6. APPLICATIONS AND EXPERIMENTS
Our goal in this section is to operationalize the learning

algorithms for the HA agent in both offline planning and
online learning settings. We focus on the SCM of the medi-
cal treatment example described in Sec. 3. The physician’s
policy is defined as

X(t) ← πndt(s(t),m(t), s(t)) = s(t) ⊕m(t) ⊕ e(t),

where ⊕ represents the exclusive OR operator.
The reward probability function P (y(t) | s(t),m(t), e(t), x(t))

and the transition probability function P (s(t+1) | s(t), x(t))
are provided in Tables 1 and 2. The entries encode the prob-
abilities for Y (t) = 1. The doctor’s natural choice of action
(i.e., following πndt) are indicated by asterisks.

Evaluation Metrics. The performance is evaluated with
standard metrics: (1) the cumulative reward per episode



S(t) = 0

M(t) = 0 M(t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 ∗0.2 0.9 0.8 ∗0.3
X(t) = 1 0.9 ∗0.2 ∗0.3 0.8

S(t) = 1

M(t) = 0 M(t) = 1

E(t) = 0 E(t) = 1 E(t) = 0 E(t) = 1

X(t) = 0 0.7 ∗0.2 ∗0.1 0.8

X(t) = 1 ∗0.2 0.7 0.8 ∗0.1

Table 1: Reward probability table for health score Y (t) = 1,
which is P (Y (t) = 1 | s(t),m(t), e(t), x(t)). The doctor’s nat-

ural choice under S(t),M (t), E(t) are indicated by asterisks.

S(t) = 0 S(t) = 1

X(t) = 0 0.9 0.3

X(t) = 1 0.7 0.8

Table 2: The transition probability table P (S(t+1) = 0 |
s(t), x(t)).

averaging over 800 runs (AR), and (2) the cumulative reward
for 250 episodes (CR).

Experiment 1: Offline Planning We run experiments
for the offline planning setting of the medical treatment ex-
ample, where full parametrizations of the model are provided
to the agent. We compare both the MDP and POMDP plan-
ning algorithms for HR and HA agents: MDP value iteration
for a HR agent (labeled hr-mdp), MDP value iteration for
a HA agent (ha-mdp), POMDP incremental pruning for a
HR agent (hr-pomdp), POMDP incremental pruning for a
HA agent (ha-pomdp). We also include the optimal policy
computed by the agent who can access all unobserved states
(opt). We believe this is fair for our examples since it al-
lows the comparison of our algorithm against a truly optimal
policy with full access to the unobserved variables.

Results shown in Fig. 4 support the HA agent approach.
The simulation reveals the HA agent (CR=2.0211 × 104)
consistently outperforms the HR agent (CR=1.3076 × 104)
in both MDP and POMDP planning algorithms. Also, we
note that the POMDP planning algorithm learns the same
policy as the one learned by the MDP algorithm for the
HA agent. This confirms that the system consisting of the
MDPUC model and a HA agent is Markov and can be solved
by MDP algorithms (Thm. 2).

Experiment 2: Online Learning We run experiments
for the online learning setting of the medical treatment ex-
ample, where the parametrizations of model are not avail-
able to the agent. The agent has to converge to the optimal
policy while explores the environment. We compare three
variants of the MORMAX [12] algorithm: MORMAX for
a HR agent (labeled hr-agent), MORMAX for a HA agent
(ha-agent), and MORMAX for a HA agent with samples
transfer method in Col. 1 (ha-agent+).

Results shown in Fig. 5 support the HA agent approach.
Specifically, the simulation reveals an improvement in cumu-
lative reward obtained by ha-agent+ (2.0574×104) compared
to ha-agent (2.0335×104). We can also see from the average
reward per episode that ha-agent+ shows a faster conver-
gence rate than ha-agent, which corroborates with the view
that the sample transferring procedure (Corol. 1) leveraging

(a) (b)

Figure 4: Simulation results for Experiment 1 comparing
the offline planning performance for HR and HA agents with
both MDP and POMDP planning methods.

(a) (b)

Figure 5: Simulation results for Experiment 2 comparing
the online learning performance for a HR agent, a HA agent
and a HA agent while leveraging observational data through
seeding.

observational data can be helpful. Surprisingly, ha-agent+ is
able to converge to an optimal policy in the very beginning.
The hr-agent, predictably, is not a competitor and experi-
ences a relatively low cumulative reward (1.3278× 104).

Overall, these results confirm that the HA agent, which
utilizes the the natural agent’s decision, converge to a higher
expected return; the samples transferring procedure allows
algorithms to converge at a faster pace in the online settings.

7. CONCLUSION
We studied the problem of finding optimal decision-making

strategies when a natural agent is already deployed and de-
cision are possibly driven by unobserved confounders. Us-
ing counterfactual machinery, we delineated two classes of
agents, namely, HR and HA – the former class attempts
to completely replace humans agents, while the latter at-
tempts to collaborate with them to reach better decisions.
We first showed that an optimal strategy could be found
by modeling the HA agent as a modified version of MDP
and POMDP solvers, depending on whether the assumption
of counterfactual Markovianity holds in the environment.
Through a syntactic transformation of the state variable, we
operationalized these strategies and showed that HA agents
consistently dominate their HR counterparts. Finally, we
derived the conditions when the performance of both agents
coincide, which delineates the class of problems where hu-
man input does not contain useful information.
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[12] I. Szita and C. Szepesvári. Model-based reinforcement
learning with nearly tight exploration complexity
bounds. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), pages
1031–1038, 2010.

[13] J. Tian and J. Pearl. On the identification of causal
effects. Technical Report R-290-L, Department of
Computer Science, University of California, Los
Angeles, CA, 2003.
http://www.cs.iastate.edu/∼jtian/r290-L.pdf.


