
Language Independent Recommender Agent

Osman Yucel
The University of Tulsa

800 S Tucker Dr
Tulsa, Oklahoma, USA

osman-yucel@utulsa.edu

Sandip Sen
The University of Tulsa

800 S Tucker Dr
Tulsa, Oklahoma, USA

sandip-sen@utulsa.edu

ABSTRACT
This paper presents a new “Language Independent Recom-
mender Agent”(LIRA), which helps the target users to make
use of the information distributed over other users’ reviews,
or any text-source pair on the web about the candidate
items. While existing review-based recommendation sys-
tems try to learn the features of the candidate items and
the users’ preferences for those features, they do not handle
the varying perspectives of different users on those features.
The approach proposed in this paper constructs an agent
for each user, which runs regression algorithms on review
texts from different sources and builds trust relations be-
tween themselves and other users’ agents. LIRA ignores the
reviews of the target users which allows the system to work
without requiring reviews from target users. Unlike existing
systems, LIRA calculates trust values based on prediction
accuracy of the sources: LIRA uses predictive capacity of
the text sources instead of social connections or rating sim-
ilarity. A key advantage of the proposed approach is that
it does not require the reviews to come from the same com-
munity or peer user group. Because we ignore the rating
values of the reviewers, and only consider ratings of target
user, we can collect and use reviews from different web pages
and even from professional critiques as long as we know the
item that text was written for and can identify the source of
that text. Since we are not clustering or finding similarities
between text from different sources, LIRA does not even re-
quire the text to be in the same language. To recommend
items to a given target user, we can utilize reviews written
in multiple languages, as long as text sources are consistent
in their usage of language constructs.

CCS Concepts
•Information systems → Recommender systems; •
Computing methodologies → Intelligent agents;

Keywords
Recommendation Systems, Text Mining, Agents

1. INTRODUCTION
The demand for accurate recommendation systems has

dramatically increased with the growth of user engagement
in varying e-Commerce portals and is facilitated by the rapid
proliferation of personal and usage data on the Internet.
An average user does not have enough time or resources to
systematically explore the content on e-Commerce sites to
identify items of interest. Hence there is a pressing need for

automated and personalized assistance for exploring content
at online stores and service outlets.

While a large number of approaches have been developed
for creating recommendation systems, there is still a funda-
mental challenge to developing these systems. The recom-
mendation systems must be able to learn about both the
preferences of the users as well as the properties of the con-
tents to provide accurate personalized recommendations to
the users. Both of these requirements present new chal-
lenges.

The first challenge is collecting information about con-
tent properties. The information about the items used by
current recommendation systems is generally provided by
the creator of the content or by a few privileged individ-
uals. This commonality makes the available information
on the contents very objective and limited for the purpose
of recommendation. This is because effective recommenda-
tion systems need to leverage subjective information from
the perspective of individual users of the system. To illus-
trate this problem, consider the following recommendation
request by a user on the GoodReads website:

“Id Like to read a page-turner book with a strong
female lead ! i like YA , with humore and some
supernatural aspects to it.” (sic)

The second critical challenge is learning the preferences of
the users: humans are not perfectly rational beings and will
not necessarily be aware of or be able to effectively articu-
late their own preferences. There are a number of issues that
prevent the recommendation systems from accurately mod-
eling the users. Probably the most problematic of these is
that the human users are not perfectly rational and may not
be completely aware of all of their own preferences. Stud-
ies has exposed paradoxical transitive preferences from users
(such as A � B � C � A) when asked to compare a set of
items [7].

Existing systems interpret the reviews of users by relating
them to their ratings. This introduces two problems: (i)
since the rating system can differ among different web pages
(different ranges, thumbs up/down, etc.), using reviews from
different web pages is challenging and (ii) those systems can
miss the fact that a feature of an item which causes one user
to dislike an item, might cause another user to like the item.
To illustrate this problem, we analyze a review by UserA
accompanied with a low rating:

“Romantic chick-flick; total waste of time!”

While it is obvious that UserA did not like the item, the
same review can suggest that UserB , who likes romantic

movies, might like this movie. Another problem with exist-
ing review based systems is that they extract the features
of the items and subsequently discard the information about
the reviewers. For example, suppose UserA reviewed a hotel
HotelX as:

“The view from the hotel was excellent!”

Let another user, UserB , review a hotelHotelY using the ex-
act same words. Existing review based recommendation sys-
tems generally interpret these reviews as “UserA and UserB
both care about the views from the hotels” and “HotelX and
HotelY both has nice views.” Therefore these systems will
recommend HotelX to UserB and HotelY to UserA. But if
HotelX has a nice city view, which UserA likes, and HotelY
has a nice nature view, which UserB likes, these recom-
mendations are misleading. LIRA avoids this problem by
learning that UserB ’s reviews are not predictive of UserA’s
ratings.

Another problem that existing review based recommenders
face is that not every user is willing to write reviews for the
items they evaluate. Rating/Review ratios in IMDB and
GoodReads are only 1/400 and 1/20 respectively. Because
of this sparsity, systems which require reviews from the tar-
get users will fail to produce recommendations for a large
majority of the users. LIRA does not require them to write
reviews and can recommend items to users as long as they
rate items.

Finally, most of the existing review based systems de-
pend on topic modelling approaches or finding similarities
between different users’ reviews. This limits their applica-
bility to situations when all the reviews are in the same lan-
guage. They also fail to work when the writing style of the
users change, such as using ”gr8” instead of ”great”. LIRA
can use reviews from different languages for recommenda-
tion, and even different writing styles, as long as users are
consistent about their language usage or writing style.

In this paper we present an agent based recommender sys-
tem, LIRA, which creates agents for target users (AT) and
reviewers to create accurate recommendations. LIRA con-
sists of targets user’s agent, which processes messages from
the other agents, which sends the words or sequence of words
(N-Grams) in their reviews to target user’s agents. LIRA
agents, AT s, learn from those messages and then make pre-
dictions for unknown items based on the learnt knowledge.

We summarize the problems which LIRA can handle, where
the existing systems fall short:

1. LIRA can make use of different perspectives of the
users on different features of items, such as liking the
different types of views in different hotels.

2. LIRA does not depend on other users’ or sources’ rat-
ings, it can work on the ratings of a target user, given
that reviews are available for items rated by the tar-
get user. This property also enables LIRA to utilize
reviews from different sources, such as blogs, reviews
from different websites, etc.

3. LIRA does not depend on social connections, explicit
statement, or rating similarity for calculating trust for
a review source. It can calculate these trust values by
measuring the capability of those sources to predict
target user’s rating in training set.

4. LIRA only needs Ratings of target users and does not
require them to write reviews to get recommendations.

5. LIRA is language independent: it can leverage reviews
written in any language.

2. RELATED WORK

2.1 TF-IDF
TF-IDF (Term Frequency - Inverse Document Frequency)

is a measure of how important a word is to a document [19].
It is widely used in the text mining approaches. TF-IDF
value is calculated by multiplying two measures: Term Fre-
quency(TF) and Inverse Document Frequency(IDF).

TF value is calculated using the following equation:

TFij =
fij

maxkfkj
(1)

In the equation above, TFij is the Term Frequency value of
word i in document j, fij is the frequency of i in j (number of
occurences), maxkfkj is the frequency of the most frequent
word k in document j. Thus, the most frequent term in
document j gets a TF of 1, and other terms get fractions as
their term frequency for this document.

IDF value is calculated using the following equation:

IDFi = log2

N

ni
(2)

In the equation above IDFi is the Inverse Document Fre-
quency of word i, ni is the number of documents that word
i appears in, and N is the total number of documents that
we have in our collection.

Then TF-IDF value becomes:

TF − IDFij = TFij × IDFi (3)

The terms with the highest TF-IDF score are often the
terms that best characterize the topic of the document. We
use TF-IDF because it can eliminate too frequent words, as
we don’t want the system to be affected by words which
appears too frequently.

2.2 Recommendation Systems
Recommendation techniques can be broadly divided into

two categories: non-personalized and personalized recom-
mendation techniques. Non-personalized Recommendation
techniques compute the average statistics of the recommended
items and recommend the same item set to all customers,
i.e., they do not consider individual user preferences. For
instance, a bookstore might recommend a bestseller book to
all of its customers. Non-personalized systems have the ad-
vantage of being fast. Moreover, they do not suffer from the
cold start problem1, since they do not need an initial data
(ratings, etc.) from each customer. Nevertheless, the quality
of the results is low because of the lack of personalization.

Personalized Recommendation techniques provide better
results by considering individual user preferences. Two well-
known approaches are content-based and collaborative filter-
ing. Moreover, some hybrid approaches have emerged to
overcome the problems of these approaches. Adomavicius
and Tuzhilin [1] provide a detailed survey about recom-
mender systems.

1The problem of not being able to provide recommendations
because of the lack of preference information about the user.

Content-based filtering algorithms recommend items that
are similar to the ones that the user has liked. Content-
based systems usually depend on textual content, e.g., key-
words. Information Retrieval (IR) techniques, such as TF-
IDF (term frequency / inverse document frequency) [26], can
be applied on the keywords. The similarity among items can
be determined by some scoring heuristics, such as cosine
similarity, after the TF-IDF vectors are calculated. Apart
from IR techniques, Bayesian classifiers and different ma-
chine learning techniques like clustering decision trees and
artificial neural networks can be used for the similarity cal-
culation [1]. Content-based recommendation systems have
been used by the researchers on various topics [24], such as
music [40], books [34], movies [8], etc. However these sys-
tems need the items to be marked with features, which is
usually objective, and cannot make use of user similarities.

Collaborative filtering algorithms identify people with over-
lapping interests. These algorithms rely on the assumption
that people who have exhibited similar interests in the past
will continue to have similar interests in the future. Instead
of considering correlation of items as in content-based algo-
rithms, correlation between users’ preferences is examined.
This is achieved by analyzing user ratings of items: if two
users have provided similar ratings for many items, then it
is concluded that these users have similar preferences. An-
other way of finding users with similar interests is to match
demographic characteristics of users, e.g., age, education,
geographic locations, gender, etc. After determining like-
minded users, the transitive relationship between users and
items is utilized. For instance, if user c1’s preferences are
similar to that of user c2’s and user c2 likes item s1, s1 is
recommended to c1 if c1 has not viewed item s1 yet.

As in the case of content-based approaches, IR techniques,
like cosine measure, can be used to calculate similarities
between users. However, in collaborative filtering, similar-
ity between vectors of the actual user-specified ratings is
measured [1]. Moreover, different machine learning tech-
niques are also applicable for identifying similarities between
users [1, 3, 33].

Collaborative filtering techniques have their own limita-
tions. They work reliably only when there are sufficient
number of users in the system with overlapping character-
istics. Another concern is that when a new item is added
to the system, it cannot be recommended to others until
a number of people have rated it. Furthermore, these tech-
niques are computationally expensive, and the recommenda-
tion process becomes cumbersome for millions of users and
items. Collaborative filtering has also been tried on various
domains such as e-commerce [22], movies [42], etc. Another
shortcoming is that these systems cannot identify when two
users rate an item with the same rating with different rea-
sons.

2.2.1 Recommendation with Topic Models
A topic model is a statistical model that generates doc-

uments (strings of words) from some set of topic clusters.
Parametric estimation techniques and unsupervised cluster-
ing algorithms such as the Expectation-Maximization algo-
rithm [10] can fit models to observed documents. With the
model, it is possible to estimate a likely distribution over
topics on a document level and a distribution over words
on the topic level. Topic models are an effective tool for
characterizing documents since they are not necessary de-

pendent on a language’s underlying grammar, and yet can
identify significant topic trends using the rate of each word’s
appearance. Some of the more popular existing topic model
frameworks are Latent Semantic Analysis (LSA) [9] and La-
tent Dirichlet Allocation (LDA) [5].

Topic models are often used in recommender systems in
a variety of creative ways [4, 6, 12, 15, 23]. Generally, such
recommender systems use topic models to generate latent
features in their documents which can then be supplied to
some supervised learning algorithm [6, 15].

The fLDA topic model from Agarwal et al. [2] extended
the LDA model to include ratings as well. The paper ap-
proaches the problem where a system has some users and
items, and the goal of the recommender system is to make
recommendations based on the user’s rating history and a
textual description of each item. The fLDA model simul-
taneously learns: (a) the correlation between items’ doc-
uments and features using LDA, and (b) the users’ affin-
ity towards each topic, to produce (c) a rating distribution
for each user i and item j. The rating distribution inside
the model is defined as a Normal (or binomial) distribution:
yij ∼ Normal(αi + βj + sTi z̄j , σ

2) where yij is the rating, αi
is the user’s rating bias, βj is the item’s rating bias, si is
the user’s affinity towards each topic as a vector, and z̄ is a
latent variable measuring how each word in the description
of item j correlates with a topic.

Similarly, the TopicMF model by Bao et al. [4] incor-
porates a topic model based on matrix factorization; this
model considers both ratings and reviews of items in its rec-
ommendation. Their model combines this topic model us-
ing matrix factorization with another recommender system
using matrix factorization to produce a combined model.
Given I users, J items, D = I × J reviews available, W
total words and an observed user-to-item rating matrix r
and a review-to-word frequency matrix F, the algorithm
attempts to find the best factorization for K hidden top-
ics: r = uI×KvTJ×K ,F = ΘD×KΦT

W×K . The hidden matri-
ces are learned by minimizing the least squares equation:
minu,v,Θ,Φ ||r − uvT || + ||F − ΘΦT || + γ where γ is an
additional term that includes bias values and measures to
prevent learned parameters from growing too large.

McAuley and Leskovec, have proposed the HFT algo-
rithm, which creates topics to identify the hidden topics
in the reviews to describe the items of interest, and also
the users’ interest in those items. They are also using their
algorithm to identify the categories of those items automat-
ically [29].

These systems work on reviews provided by the users, but
in the process of combining them into topics they lose the
information about the reviewers. For example if two people
both mention that they like the ’view’ of two different hotels,
those items and users will be considered similar by these
systems. However the types of the views can be different and
the users opinion of a ‘good view’ might also differ between
users.

2.2.2 Hybrid Recommendation Systems
Sparsity of available data makes the personalization of rat-

ing prediction difficult, as it makes it hard to link users and
products to each other. To overcome this problem some re-
searchers focused on generating hybrid recommendation sys-
tems to combine the strengths of different approaches [16].
Mostly the base of this hybrids are combination of content-

based [16, 39, 21] and collaborative recommendation sys-
tems [38]. Some researchers tried to incorporate the infor-
mation from social networks to this hybrid recommendation
systems either as social tags [32], or social trust [41]. Some
of the more recent studies focused on creating hybrid recom-
mendation systems which also make use of sentiment anal-
ysis approaches [14, 45]. Leung et. al. proposed a method
to extract association rules from data and use it as a sup-
plement to enhance the recommendation system. [20]

2.2.3 Recommendation Using Trust
The area of trust-based recommender systems has been

the object of extensive study for the past years. Indeed,
trust has been shown to provide significant improvements
to classical collaborative filtering techniques. The main dif-
ference between most of these trust-enhanced methods is the
acquisition of trust values between actor pairs.

Golbeck introduced TidalTrust algorithm, which uses a
modified breadth-first search, to estimate the trust by using
transitive rules[11]. In this study the trust of user u for user
v is calculated using u’s trusted users’ trust on v. Massa et.
al. [27, 28] proposed a similar method where instead of only
looking at one level trust transitivity, they remove cycles
from the trust network. Using a trust propagation horizon
phase, they allow the trust to diffuse along the network.

While the studies above require an explicit statement about
direct trust between users, it is very difficult to get that in-
formation from user explicitly. Therefore some other stud-
ies focused on defining their own implicit trust values based
on implicit information. O’Donovan and Smith proposed a
trust value based on the similarity of two user’s ratings [35],
while Wang et. al. generated a trust metric based on the
similarity among users’ tastes [43].

2.3 Gaussian Process
A Gaussian Process is a collection of random variables,

any finite number of which have (consistent) joint Gaussian
distributions [37]. Every Gaussian Process can be fully spec-
ified with its mean function m(x) and co-variance function
k(x, x′). Given N data points, Xn, tn where the inputs x
are vectors of some input dimension, and targets t are the
output values, the Gaussian process tries to infer the un-
derlying function, f(x) from the given data [25]. When that
function is inferred a Gaussian process can use that function
to predict tn+1 for a new data point xn+1.

3. METHODOLOGY
In this section we define how LIRA works. We first define

how the data is prepared and then explain how LIRA uses
that data.

3.1 Data Preparation
LIRA requires target user’s ratings and just the text from

sources’ reviews. Therefore we split the data into two set of
triplets. For the target user side we get only (User, Item,Rating)
triplets. For sources’ side we create triplets of the form
(Source, Item,Review). The triplets show that these two
sets are only related by items. Which means that ratings of
the review sources are not important, which allows us to use
reviews from different websites or blogs, as long as we can
identify reviews from a common source.

We want to calculate trust for every review source by their
ability to predict a target user’s rating. Therefore we split

the given ratings and reviews into a training set which has
75% of the given information and the remaining 25% as the
weight calculation set. We will explain how we use these
sets in the trust calculation step in Section 3.2.2.

3.2 Definition of LIRA
We train the LIRA model separately for every single user.

In this subsection we will explain how the system is built
for one user. We will use the example in the overview of
the system (seen Figure 1) to explain the steps. For this
example, the rating scale used is [1, 5].

We build an agent for the target user that contains sepa-
rate text-regression algorithms for every review source.

3.2.1 Text Regression
We start this process by creating data points which con-

sists of the reviews by every source separately and marking
them with target user’s rating for the corresponding item.
That data point is then converted to a feature vector where
the features are the words in the review and their values are
their respective TF-IDF [19] values.

We choose a machine-learning regression algorithm, such
as Neural Network [13], Linear Regression [33], Gaussian
Process [37], etc. Because of its simplicity and speed, we
chose Gaussian Process to predict the ratings from the given
words. In Figure 1 Learner A1 will only find the common
item I1 among target user’s ratings and source A1’s reviews.
Learner A1 will learn that the word sequence ‘Chick-Flick’
is likely to result in the target user rating that item 5. Sim-
ilarly Learner A2 will find 2 common items, I1 and I3, get-
ting the reviews from A2 for those items. Learner A2 will
learn that the word ‘Romantic’ by A2 means high ratings
by target user and ‘Historic’ by A2 means low ratings by
target user. Learner A2 will also realize that, word ‘Nice’
by A2 is not useful for predicting target user’s ratings.

When predicting the target user’s rating for an item the
user has not seen, regression algorithms for different review
sources predict separately. Those predictions will then be
averaged using the trust values in the ensembler step.

Learners which do not have a review written for the item
we are trying to predict the rating for cannot make predic-
tion and we exclude those sources. For example, Learner A2
will not be able to make a prediction for I5.

The final prediction for an item IX , ˆrIX is calculated as:

ˆrIX =

∑
u∈Rev(IX) Trust(Lu)× Prediction(Lu, IX)∑

u∈Rev(IX) Trust(Lu)
, (4)

where Rev(IX) is the set of reviewers who have provided
review for item IX , Trust(u) is the trust value for that re-
viewer, and Prediction(Lu, IX) is the prediction by Learner
u, Lu, for item IX .

3.2.2 Trust Calculation
Unlike existing systems, LIRA assigns trust for the learn-

ers based on their capability, instead of relying on social con-
nections or rating similarity. As mentioned in Section 3.1,
data is split into training and weight calculation sets. First,
all the learners are trained using the training set. Then we
make all the learners predict every item in the weight calcu-
lation set. This approach is similar to the use of validation
set in common suprvised machine learning approaches.

Figure 1: Overview of LIRA

Figure 2: The adjusted sigmoid function.

The Root Mean Squared Error (RMSE) for learner L is

RMSE(L) =

√∑
I∈PL

(Prediction(L, I)− rI)2

|PL|
, (5)

where PL is the set of items which L can make predictions on
and Prediction(L, I) is the rating prediction of L for item
I.

This error measure, though necessary, is not sufficient. If
we only consider the RMSE, a LearnerA which made only
one, albeit perfectly accurate, prediction will have the same
trust value as a LearnerB who was able to perfectly predict
a large number of items. Therefore we include the number
of predictions in our trust calculation. We use a sigmoid
function to ensure that the magnitude of this count does
not suppress the error value. As the number of predictions
is non-negative, we choose the following sigmoid function
such that sig(0) = 0 and sig(∞) = 1 (see Figure 2):

sig(x) =
2

1 + e−x
− 1 (6)

We need to combine these two values calculated for ev-
ery reviewer, to get the final trust value. Trust must be
positively correlated with the number of common items; so

we choose the sigmoid function, with the number of common
items as argument, as the numerator of the trust expression.
The error measure calculated must be negatively correlated
with the trust value. As the best case is having error equal
to 0, we avoid choosing it as the denominator. To make sure
the trust value lies between [0, 1] we add 1 to error and make
that the denominator. For tuning the relative importance
of the number of common items and error, we use an α pa-
rameter as the exponent of the denominator. The resultant
trust value is given by the following expression:

trust(L) =
sigmoid(|PL|)

(1 +RMSE(L))α
. (7)

We choose α = 3 based on experiments.

4. EXPERIMENTAL SETUP
To make sure that we have a satisfactory number of re-

views per user, which will be enough for the agents to learn
and predict, we increased the density of the user-item bipar-
tite graph by removing every user and item which has less
than N reviews. N was chosen separately for every category
of reviews, from the interval N ∈ [10, 15]. N is chosen to
be the maximum value where a bipartite sub-graph exists,
where every user and item node’s degree is greater than or
equal to N .

Instead of following the traditional method of randomly
splitting the data into 2 sets (training and testing), we have
built a slightly different approach. Because our algorithm
works on every user separately, we make the data split on
the user level. For every user we choose a random split
of 80%-20% of their ratings and use the former one as the
training and weight calculation set, and the latter for testing
our algorithm.

To evaluate our recommender system, we used a dataset
of product reviews from the web marketplace Amazon, pro-
vided by McAuley et al. [30, 31]. We chose to use 5 of the
24 datasets provided. We chose the Game, Apps and Kin-
dle (which mostly consists of books) domains as we expect
that reviewers words are more descriptive of the products
for these domains. The Music domain is similar to these
domains, in terms of diversity in personal taste, but is likely
to be more difficult to describe the items in words. We

Table 1: Properties of datasets
Dataset # Users # Items # Ratings
Apps 4094 2285 97656
Music 1049 990 22772
Game 2816 2141 52158
Health 1251 915 40283
Kindle 3613 3807 116438

also added the Health domain as we wanted to include in
our evaluation set a domain which is not very dependent on
personal taste. The information about the datasets is given
in Table 1

For the evaluation of our approach, we compared our re-
sults in 5 datasets, to 5 of the existing recommendation al-
gorithms. We have chosen the simple UserKNN [17] and
ItemKNN [17] algorithms, which are collaborative filtering
approaches, as the baseline methods.

We also picked RegSVD algorithm proposed by Paterek [36],
and 2 algorithms BiasedMF and SVD++, both proposed by
Koren [18]. These three algorithms are all matrix factoriza-
tion approaches which try extracting topics from the ratings.

4.1 All Ratings Experiment
For this set of experiments we have used all the ratings

and reviews in the dataset. LIRA works separately for every
user, so for every user LIRA goes over every other users’
review to predict the rating of the target user.

4.2 100 User Experiment
This set of experiments are done to test LIRA’s capability

of making use of the reviews which are on different sources
(websites, blogs, critique reviews). We randomly choose 100
users from the dataset. For those 100 users, we use their own
ratings but the reviews from all the users in the dataset to
predict their ratings. We still use the ratings of the chosen
100 users, to test the competing algorithm.

This approach coincides with the following real life ex-
ample: Consider a newly built movie recommendation web
site which has few (in our example 100) users. As this sys-
tem will only have the ratings of these few users, the only
rating data you can use for the recommendation systems is
that. However LIRA can make use of outside sources for the
recommendation, such as critique reviews, fan blogs, etc.

The fact that the website itself have only 100 users, make
the data available for the existing recommendation systems
to be very sparse. Being able to make use of reviews from
different sources, LIRA does not get affected by this sparsity.

We made sure that the same set of 100 randomly selected
users and exactly the same training and test sets are used
to test 5 competing algorithms and the ABRA model.

4.3 Error Measurement
We have chosen to compare the success of the competing

algorithms and ABRA using one of the most commonly used
error functions in recommendation systems.

Given that r is the actual rating, r̂ is the predicted rating,
P is set of predictions. We chose the error measure “Mean
Absolute Error(MAE)” [44]. The definition of MAE is:

MAE =

∑
p∈P |rp − r̂p|
|P | (8)

5. RESULTS
When we run all 6 algorithms on the same dataset which

consists of all the ratings and reviews from that domain,
we see on Table 2 that LIRA outperforms all competing
algorithms on 5 of the domains (See Figure 3 for visual
comparison). This is likely because these 5 domains are
the ones where the reviewers can express their opinion in a
more structured, subjective manner. For example review-
ers usually use words like “addictive” or “time-killer” for a
game which does give information about the item in ques-
tion. On the other hand, for “Health” domain, the opinions
are less subjective, which might reduce the usefulness of the
information extracted from reviews.

Figure 3: Comparison of MAE values on each do-
main by each algorithm, in the experiment “All Rat-
ings”

“100 User Experiment” was conducted on randomly se-
lected users from each domain. We see the results of these
experiments on Table 3. The results show that LIRA over-
performed all other algorithms. From the figure and table,
we can see that while in most of the cases, the competing
algorithms are suffering from data sparsity in these experi-
ments, RegSVD getting affected the most, LIRA is still able
to make accurate recommendations. (See Figure 4 for visual
comparison). These results show that even with a few users
in the system, LIRA does not lose predictive power.

Figure 4: Comparison of MAE values on each do-
main by each algorithm, in the experiment “100
Users”

Table 2: MAE of 5 competing algorithms and LIRA model on the all ratings experiment
UserKNN ItemKNN RegSVD BiasedMF SVD++ LIRA

Apps 1.017 0.950 0.996 0.956 0.948 0.919
Music 0.731 0.663 0.708 0.663 0.659 0.655
Game 0.851 0.802 0.840 0.779 0.780 0.770
Health 0.722 0.714 0.731 0.705 0.698 0.743
Kindle 0.617 0.529 0.533 0.494 0.493 0.441

Table 3: MAE of 5 competing algorithms and LIRA model on the 100 users experiment
UserKNN ItemKNN RegSVD BiasedMF SVD++ LIRA

Apps 1.107 1.109 2.247 1.065 1.063 1.034
Music 0.852 0.857 1.687 0.734 0.743 0.585
Game 0.846 0.859 2.462 0.816 0.809 0.803
Health 0.816 0.851 1.184 0.781 0.787 0.696
Kindle 0.651 0.639 0.897 0.538 0.536 0.469

6. CONCLUSIONS
While most of the work on recommendation systems is

based on ratings and rating similarities, limited representa-
tive power of ratings created the need for new recommenda-
tion systems which can make of use of the other information
available to improve recommendation accuracy. With the
introduction of Web 2.0 and burgeoning of online platforms,
which rely on user-generated content, a rapidly increasing
volume of reviews are available on online or off-site enti-
ties. Reviews written by users are more representative and
detailed representation of a user’s feeling about an item.
Descriptive reviews also express users’ opinions about the
features of candidate items, and helps produce a deeper un-
derstanding of their preferences.

In this paper we have proposed an agent-based approach,
using the trust aspect of multi-agent societies, that uses re-
gression algorithms to predict the ratings of a target user
for a candidate item. Our approach creates agents for both
target users and reviewers to create accurate recommenda-
tions. LIRA consists of targets user’s agent, which listens
for messages from the other agents, where the messages are
words or sequence of words in their reviews. In LIRA, the
agent of the target user learns predictive knowledge from
those messages which are subsequently used for producing
recommendations. LIRA assigns trust to each source’s agent
using their accuracy on a set of unknown items. Final predic-
tion of LIRA is calculated using a trust-weighted average of
sources’ individual prediction. This approach allows the the
recommendation system to differentiate two users, who use
the same word for different reasons, by inferring from their
past reviews where identical words have different predictive
values for the target user when used by different sources.

Another key feature of LIRA is that it does not use the rat-
ings of the sources and uses only target user’s ratings. This
results in the LIRA approach having two key advantages.
Firstly, it can use reviews from different sources, such as dif-
ferent websites or fan blogs, without needing those texts to
be accompanied with a rating value. This makes LIRA use-
ful for new systems, as they will not have many users to write
reviews for them. Secondly, by not taking the sources rat-
ings into account, LIRA treats reviews as descriptive texts.
For example, if one or more sources complain about a movie,
because they found it “too romantic”, LIRA can infer that
the movie might be recommended to a target user who does

enjoy romantic movies.
Since LIRA does not deal with the meaning of the words,

and only use them as signals between agents, it is not im-
portant which language the review was written in. As long
as sources are consistent with their choice of language or
writing style, LIRA will be able to effectively leverage their
reviews.

Last, but not the least, a key advantage of LIRA is that it
does not require the target users to write reviews. It is well-
known that people write reviews much more infrequently
than they rate items online. Hence LIRA can be used in
many scenarios where review based recommender systems
that require target users to write reviews can be used.

We presented experimental results from two sets of ex-
periments. In the first set there was a rating accompanying
every review. This experiment showed that making use of
just the reviews of other users, ignoring ratings, performs
better than just using the ratings and ignoring reviews in
most of the domains. Domains where LIRA was more suc-
cessful than its competitors are likely those where people
are more capable and likely to write more descriptive re-
views. The second set of experiments show that when there
is very little user and rating data available, only LIRA can
make use of other sources of information to make accurate
recommendations and thus outperform its competitors.

6.1 Future Work
One of the properties of LIRA, which might look like a

disadvantage, is that it needs to train regression algorithms
for every user-source pair. However it should be mentioned
that the agents work independently from each other which
makes this approach highly parallelizable. We are currently
also working on an approach which provides the same advan-
tages that LIRA provides, without having to create separate
learners for every source.

REFERENCES
[1] G. Adomavicius and A. Tuzhilin. Toward the next

generation of recommender systems: a survey of the
state-of-the-art and possible extensions. Knowledge
and Data Engineering, IEEE Transactions on,
17(6):734–749, June 2005.

[2] D. Agarwal and B.-C. Chen. flda: matrix factorization
through latent dirichlet allocation. In Proceedings of

the third ACM international conference on Web search
and data mining, pages 91–100. ACM, 2010.

[3] E. Alpaydin. Introduction to machine learning. MIT
press, 2014.

[4] Y. Bao, H. Fang, and J. Zhang. Topicmf:
Simultaneously exploiting ratings and reviews for
recommendation. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, pages 2–8,
2014.

[5] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. J. Mach. Learn. Res., 3:993–1022,
Mar. 2003.

[6] L. Chen and F. Wang. Preference-based clustering
reviews for augmenting e-commerce recommendation.
Knowledge-Based Systems, 50:44–59, 2013.

[7] J. M. Davis. The transitivity of preferences.
Behavioral science, 3(1):26–33, 1958.

[8] S. Debnath, N. Ganguly, and P. Mitra. Feature
weighting in content based recommendation system
using social network analysis. In Proceedings of the
17th international conference on World Wide Web,
pages 1041–1042. ACM, 2008.

[9] S. C. Deerwester, S. T. Dumais, T. K. Landauer,
G. W. Furnas, and R. A. Harshman. Indexing by
latent semantic analysis. JAsIs, 41(6):391–407, 1990.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em
algorithm. Journal of the royal statistical society.
Series B (methodological), pages 1–38, 1977.

[11] J. A. Golbeck. Computing and applying trust in
web-based social networks. 2005.

[12] N. Hariri, Y. Zheng, B. Mobasher, and R. Burke.
Context-aware recommendation based on review
mining. General Co-Chairs, page 27, 2011.

[13] T. Hastie and R. Tibshirani. Classification by pairwise
coupling. In M. I. Jordan, M. J. Kearns, and S. A.
Solla, editors, Advances in Neural Information
Processing Systems, volume 10. MIT Press, 1998.

[14] S. Homoceanu, M. Loster, C. Lofi, and W.-T. Balke.
Will i like it? providing product overviews based on
opinion excerpts. In Commerce and Enterprise
Computing (CEC), 2011 IEEE 13th Conference on,
pages 26–33. IEEE, 2011.

[15] N. Jakob, S. H. Weber, M. C. Müller, and
I. Gurevych. Beyond the stars: exploiting free-text
user reviews to improve the accuracy of movie
recommendations. In Proceedings of the 1st
international CIKM workshop on Topic-sentiment
analysis for mass opinion, pages 57–64. ACM, 2009.

[16] P. Kazienko and K. Musia l. Recommendation
framework for online social networks. Springer, 2006.

[17] H.-N. Kim, A.-T. Ji, I. Ha, and G.-S. Jo. Collaborative
filtering based on collaborative tagging for enhancing
the quality of recommendation. Electronic Commerce
Research and Applications, 9(1):73–83, 2010.

[18] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 426–434. ACM, 2008.

[19] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining

of massive datasets. Cambridge University Press, 2014.

[20] C. W.-k. Leung, S. C.-f. Chan, and F.-l. Chung. An
empirical study of a cross-level association rule mining
approach to cold-start recommendations.
Knowledge-Based Systems, 21(7):515–529, 2008.

[21] A. Levi, O. Mokryn, C. Diot, and N. Taft. Finding a
needle in a haystack of reviews: cold start
context-based hotel recommender system. In
Proceedings of the sixth ACM conference on
Recommender systems, pages 115–122. ACM, 2012.

[22] G. Linden, B. Smith, and J. York. Amazon.com
recommendations: Item-to-item collaborative filtering.
Internet Computing, IEEE, 7(1):76–80, 2003.

[23] H. Liu, J. He, T. Wang, W. Song, and X. Du.
Combining user preferences and user opinions for
accurate recommendation. Electronic Commerce
Research and Applications, 12(1):14–23, 2013.

[24] P. Lops, M. De Gemmis, and G. Semeraro.
Content-based recommender systems: State of the art
and trends. In Recommender systems handbook, pages
73–105. Springer, 2011.

[25] D. J. MacKay. Introduction to gaussian processes.
NATO ASI Series F Computer and Systems Sciences,
168:133–166, 1998.

[26] C. D. Manning, P. Raghavan, H. Schütze, et al.
Introduction to information retrieval, volume 1.
Cambridge university press Cambridge, 2008.

[27] P. Massa and P. Avesani. Trust metrics on
controversial users: balancing between tyranny of the
majority and echo chambers. International Journal on
Semantic Web and Information Systems, 3(1):39–64,
2007.

[28] P. Massa and B. Bhattacharjee. Using trust in
recommender systems: an experimental analysis. In
Trust Management, pages 221–235. Springer, 2004.

[29] J. McAuley and J. Leskovec. Hidden factors and
hidden topics: understanding rating dimensions with
review text. In Proceedings of the 7th ACM conference
on Recommender systems, pages 165–172. ACM, 2013.

[30] J. McAuley, R. Pandey, and J. Leskovec. Inferring
networks of substitutable and complementary
products. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 785–794. ACM, 2015.

[31] J. McAuley, C. Targett, Q. Shi, and A. van den
Hengel. Image-based recommendations on styles and
substitutes. In Proceedings of the 38th International
ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 43–52.
ACM, 2015.

[32] S. E. Middleton, N. R. Shadbolt, and D. C. De Roure.
Ontological user profiling in recommender systems.
ACM Transactions on Information Systems (TOIS),
22(1):54–88, 2004.

[33] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[34] R. J. Mooney and L. Roy. Content-based book
recommending using learning for text categorization.
In Proceedings of the fifth ACM conference on Digital
libraries, pages 195–204. ACM, 2000.

[35] J. O’Donovan and B. Smyth. Trust in recommender
systems. In Proceedings of the 10th international

conference on Intelligent user interfaces, pages
167–174. ACM, 2005.

[36] A. Paterek. Improving regularized singular value
decomposition for collaborative filtering. In
Proceedings of KDD cup and workshop, volume 2007,
pages 5–8, 2007.

[37] C. E. Rasmussen. Gaussian processes for machine
learning. 2006.

[38] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl.
Item-based collaborative filtering recommendation
algorithms. In Proceedings of the 10th international
conference on World Wide Web, pages 285–295. ACM,
2001.

[39] A. I. Schein, A. Popescul, L. H. Ungar, and D. M.
Pennock. Methods and metrics for cold-start
recommendations. In Proceedings of the 25th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 253–260.
ACM, 2002.

[40] M. Soleymani, A. Aljanaki, F. Wiering, and R. C.
Veltkamp. Content-based music recommendation
using underlying music preference structure. In
Multimedia and Expo (ICME), 2015 IEEE
International Conference on, pages 1–6. IEEE, 2015.

[41] K. Sugiyama, K. Hatano, and M. Yoshikawa. Adaptive
web search based on user profile constructed without
any effort from users. In Proceedings of the 13th
international conference on World Wide Web, pages
675–684. ACM, 2004.

[42] L. H. Ungar and D. P. Foster. Clustering methods for
collaborative filtering. In AAAI workshop on
recommendation systems, volume 1, pages 114–129,
1998.

[43] J. Wang, J. Yin, Y. Liu, and C. Huang. Trust-based
collaborative filtering. In Fuzzy Systems and
Knowledge Discovery (FSKD), 2011 Eighth
International Conference on, volume 4, pages
2650–2654. IEEE, 2011.

[44] C. J. Willmott and K. Matsuura. Advantages of the
mean absolute error (mae) over the root mean square
error (rmse) in assessing average model performance.
Climate research, 30(1):79–82, 2005.

[45] D. Yang, D. Zhang, Z. Yu, and Z. Wang. A
sentiment-enhanced personalized location
recommendation system. In Proceedings of the 24th
ACM Conference on Hypertext and Social Media,
pages 119–128. ACM, 2013.

