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ABSTRACT
The majority of Multi-Agent Reinforcement Learning (MARL)
implementations aim to optimise systems with respect to a
single objective, despite the fact that many real world prob-
lems are inherently multi-objective in nature. Research into
multi-objective MARL is still in its infancy, and few studies
to date have dealt with the issue of credit assignment. Re-
ward shaping has been proposed as a means to address the
credit assignment problem in single-objective MARL, how-
ever it has been shown to alter the intended goals of the
domain if misused, leading to unintended behaviour. Two
popular shaping methods are Potential-Based Reward Shap-
ing and difference rewards, and both have been repeatedly
shown to improve learning speed and the quality of joint
policies learned by agents in single-objective problems. In
this work we discuss the theoretical implications of applying
these approaches to multi-objective problems, and evaluate
their efficacy using a new multi-objective benchmark domain
where the true Pareto optimal system utilities are known.
Our work provides the first empirical evidence that agents
using these shaping methodologies can sample true Pareto
optimal solutions in multi-objective Stochastic Games.
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1. INTRODUCTION
Multi-Agent Reinforcement Learning (MARL) is a power-

ful Machine Learning paradigm, where multiple autonomous
agents can learn to improve the performance of a system
through experience. The majority of MARL implementa-
tions aim to optimise systems with respect to a single ob-
jective, despite the fact that many real world problems are
inherently multi-objective in nature. Single-objective ap-
proaches seek to find a single solution to a problem, whereas
in reality a system may have multiple conflicting objectives
that could be optimised. Examples of multi-objective prob-
lems where MARL may be applied include water resource
management [21], traffic signal control [2, 15], electricity
generator scheduling [19] and robot coordination tasks [36].

Multi-objective optimisation (MOO) approaches address
the requirement to make a trade-off between competing ob-
jectives. Compromises between competing objectives can

∗This paper extends our AAMAS 2017 short paper [17] with
additional experimental results and theoretical analysis.

be defined using the concept of Pareto dominance [23]. The
Pareto optimal or non-dominated set consists of solutions
that are incomparable, where each solution in the set is not
dominated by any of the others on every objective. In multi-
objective Reinforcement Learning (MORL) the reward sig-
nal is a vector, where each component represents the perfor-
mance on a different objective.

Reward shaping has been proposed as a means to address
the credit assignment problem in single-objective MARL,
however it has been shown to alter the intended goals of the
domain if misused, leading to unintended behaviour [25].
Potential-Based Reward Shaping [22] (PBRS) and differ-
ence rewards [35] (D) are popular shaping methods for MARL,
both of which have been repeatedly shown to improve learn-
ing speed and the quality of joint policies learned by agents
in single-objective problems. Research into multi-objective
MARL is still in its infancy, and very few studies have dealt
with the issue of credit assignment in this context. Further-
more, no works to date have empirically evaluated the effects
of different MARL credit assignment approaches using do-
mains where the true Pareto optimal solutions are known.

The contributions of this work are as follows: (1) We in-
troduce the first multi-objective MARL benchmark prob-
lem where the true set of Pareto optimal system utilities is
known; (2) We discuss the theoretical implications of apply-
ing D and PBRS in multi-objective MARL; (3) We provide
the first empirical evidence that agents learning using either
D or PBRS can sample true Pareto optimal solutions in
multi-objective MARL domains.

In the next section of this paper, we discuss the necessary
terminology and relevant literature. We then discuss the
theory relating to reward shaping in multi-objective Stochas-
tic Games. Section 4 introduces our new benchmark prob-
lem, and presents an empirical evaluation of D and PBRS.
The final section concludes our paper with a discussion of
our findings and possible future extensions to this work.

2. BACKGROUND

2.1 Multi-Agent Reinforcement Learning
Reinforcement Learning (RL) is a powerful Machine Learn-

ing paradigm, in which autonomous agents have the capabil-
ity to learn through experience. Markov Decision Processes
(MDPs) are considered the de facto standard when formal-
ising problems involving a single agent learning sequential
decision making [33], whereas the more general Stochastic
Game (SG) may be used in the case of a Multi-Agent System
(MAS) [3]. A SG is defined as a tuple< S,A1...N , T,R1...N >,



where N is the number of agents, S is the set of states, Ai is
the set of actions for agent i (and A is the joint action set),
T is the transition function, and Ri is the reward function
for agent i. The next environment state and the rewards
received by each agent depend on the joint action of all of
the agents in the SG. Note also that each agent may receive
a different reward for a state transition, as each agent has
its own separate reward function.

Model-free learners sample the underlying MDP or SG di-
rectly in order to gain knowledge about the unknown model,
in the form of value function estimates (Q values). These es-
timates represent the expected reward for each state action
pair, which aid an agent in deciding which action is most
desirable to select when in a certain state. An agent must
strike a balance between exploiting known good actions and
exploring the consequences of new actions in order to max-
imise the reward received during its lifetime. Two strategies
that are commonly used to manage the exploration exploita-
tion trade-off are ε-greedy and softmax (Boltzmann) [33]. Q-
learning [32] is one of the most commonly used model-free
RL algorithms. In Q-learning, the Q values are updated ac-
cording to Eqn. 1, where α ∈ [0, 1] is the learning rate and
γ ∈ [0, 1] is the discount factor.

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (1)

One of two different approaches is typically used when RL
is applied to MAS: multiple individual learners or joint ac-
tion learners. In the former case multiple agents deployed
into an environment each use a single-agent RL algorithm,
whereas joint action learners use multi-agent specific algo-
rithms which take account of the presence of other agents.

MAS are typically designed to converge to a Nash equilib-
rium [27]. While it is possible for multiple individual learners
to converge to a point of equilibrium, there is no theoretical
guarantee that the agents will converge to a globally optimal
joint policy. As RL agents seek to maximise the reward they
receive, the design of the reward function directly affects the
joint policies learned, and thus the issue of credit assign-
ment in MARL is an area of active research. Two typical
reward functions for MARL exist: local rewards unique to
each agent and global rewards representative of the group’s
performance.

A local reward (Li) is based on the utility of the part of
a system that agent i can observe directly. Individual agents
are self-interested, and each will selfishly seek to maximise
its own local reward signal, often at the expense of global
system performance when locally beneficial actions are in
conflict with the optimal joint policy.

A global reward (G) provides a signal to the agents
which is based on the utility of the entire system. Rewards of
this form encourage all agents to act in the system’s interest,
with the caveat that an individual agent’s contribution to
the system performance is not clearly defined. All agents
receive the same reward signal, regardless of whether their
actions actually improved the system performance.

2.2 Reward Shaping
RL agents typically learn how to act in their environment

guided by the reward signal alone. Reward shaping provides
a mechanism to guide an agent’s exploration of its environ-
ment, via the addition of a shaping signal to the reward
signal naturally received from the environment. The goal of
this approach is to increase learning speed and/or improve

the final policy learned. Generally, the reward function is
modified by the addition of a shaping reward F , and the
agent then learns using the signal R′ = R + F . Empirical
evidence has shown that reward shaping can be a powerful
tool to improve the performance of RL agents; however, it
can modify the original goal(s) of the problem if it is not
applied carefully [25].

Potential-Based Reward Shaping (PBRS) was pro-
posed to deal with such problems. When implementing
PBRS, each possible system state has a certain potential,
which allows the system designer to express a preference for
an agent to reach certain system states. Ng et al. [22] de-
fined the additional shaping reward F for an agent receiving
PBRS as shown in Eqn. 2 below:

F (s, s′) = γΦ(s′)− Φ(s) (2)

where Φ(s) is a potential function which returns the poten-
tial for a state s, and γ is the same discount factor used when
updating value function estimates. PBRS has been proven
not to alter the optimal policy of a single agent acting in an
MDP [22], or the set of Nash equilibria in the case of multiple
agents acting in a SG [7]. Furthermore, Devlin and Kudenko
[8] also proved that the potential function can be changed
dynamically during learning, while still preserving the guar-
antees of policy invariance and consistent Nash equilibria.
Recent analysis by Grześ [11] has shown that the potential
of the terminal state must be zero to preserve theoretical
guarantees in finite horizon domains. PBRS does not alter
the set of Nash equilibria of a MAS, but it can affect the
joint policy learned. It has been empirically demonstrated
that groups of agents guided by a well-designed potential
function can learn at an increased rate and converge to bet-
ter joint policies, when compared to agents learning without
PBRS [6, 9]. However, with an unsuitable potential func-
tion, groups of agents learning with PBRS can converge to
worse joint policies than those learning without PBRS.

A difference reward (Di) is a shaped reward signal that
aims to quantify each agent’s individual contribution to the
system performance in a cooperative MAS [35]. Formally:

Di(si, ai) = G(s, a)−G(s−i ∪ sci , a−i ∪ aci ) (3)

where G(s, a) is the global system utility, s is the system
state, a is the joint action, and G(s−i ∪ sci , a−i ∪ aci ) is the
counterfactual which represents the global utility for a the-
oretical system without the contribution of agent i. The
terms s−i and a−i refer to all the states and actions not in-
volving agent i, while sci and aci are fixed states and actions
not dependent on agent i. Typically, the counterfactual sys-
tem utility is calculated with agent i removed, or by assum-
ing a default state/action for agent i. Difference rewards
are a well-established shaping methodology, with many suc-
cessful applications in MARL (e.g. [13, 16, 18, 19, 28, 34]).
Recent work has extended D to increase its effectiveness in
problem domains where agents’ actions must be tightly co-
ordinated to achieve a high level of system performance [24].

2.3 Multi-Objective Reinforcement Learning
Multi-objective Reinforcement Learning problems may be

defined using the MDP or SG framework as appropriate, in a
similar manner to single-objective problems. The main dif-
ference lies in the definition of the reward function: instead
of returning a single scalar value r, the reward function R
in multi-objective domains returns a vector r consisting of



the rewards for each individual objective c ∈ C. Therefore,
a regular MDP or SG can be extended to a multi-objective
MDP (MOMDP) or multi-objective SG (MOSG) by mod-
ifying the return of the reward function. It follows that
the value function Vπ(s) in multi-objective domains returns
a vector v whose components are the expected discounted
returns for each objective when starting in state s and fol-
lowing a policy π [26]:

Vπ(s) = Eπ
{
∞∑
k=0

γkrt+k+1 | st = s

}
(4)

A policy π∗ ∈ Π (where Π is the set of possible policies) is
Pareto optimal if for every π ∈ Π either,

∀c∈C [Vπ
c (s0) = Vπ∗

c (s0)] (5)

or, there is at least one c ∈ C such that

Vπ
c (s0) < Vπ∗

c (s0) (6)

where Vπ
c (s0) is the expected discounted return for objective

c when starting in state s0 and following the policy π.
That is, π∗ is Pareto optimal if there exists no feasible

policy π which would increase the value of one objective
beyond that of π∗ without causing a simultaneous decrease
in the value of another objective. A policy that does not
meet these criteria is dominated by another policy in Π.
All policies not dominated by another are part of the non-
dominated set (NDS).

The majority of MORL approaches make use of single-
policy algorithms in order to learn Pareto optimal solu-
tions. Examples of single-policy algorithms include tradi-
tional temporal difference methods such as Q-learning and
SARSA. In order to apply single-policy algorithms to MORL
problems, scalarisation functions may be used to transform
a reward vector r into a scalar reward signal r [26]. An agent
learns using the scalarised version of the reward vector, and
selects actions as normal by comparing the scalarised Q val-
ues for actions in a given state (e.g. using ε-greedy). Linear
scalarisation (Eqn. 7) is commonly used in MORL literature
(e.g. [2, 18, 19, 21, 26, 29, 30, 36]):

r+ =
∑
c∈C

wcrc (7)

where w is the objective weight vector, wc is the weight
for objective c, r+ is the scalarised reward signal, rc is the
component of the reward vector r for objective c, and C is
the set of objectives. When using linear scalarisation, al-
tering the weights in the weight vector allows the user to
express the relative importance of the objectives. Linear
scalarised MORL approaches sometimes make use of nor-
malisation where the scale of the expected returns varies
between objectives, in order to simplify the process of se-
lecting objective weights. The normalised score on objective
c may be calculated as [20]:

rnormc =
rc − rminc

rmaxc − rminc

(8)

where rnormc is the normalised score on objective c, and rmaxc

and rminc are the utopia and nadir values for objective c.
MOO approaches typically seek to produce a set of solutions
that approximate the true Pareto front of the problem. In

order to produce a set of Pareto optimal solutions using lin-
ear scalarised single-policy RL algorithms, researchers typi-
cally record the best non-dominated solutions found during
a number of independent runs [18, 29, 36]. These solutions
are then compared with one another to produce an approx-
imation of the Pareto front. The hypervolume metric mea-
sures the spread of a given set of non-dominated solutions;
therefore, the diversity and accuracy of any set of solutions
can easily be evaluated, by comparing its hypervolume with
that of the true Pareto front.

For a more complete survey of MORL beyond the brief
summary presented here, we refer the interested reader to a
recent survey article by Roijers et al. [26].

3. REWARD SHAPING IN MULTI-
OBJECTIVE STOCHASTIC GAMES

3.1 Previous Work
Some previous works have investigated the effect of credit

assignment in MOSGs, and empirical results have shown
that both D [18, 36] and PBRS [14] can outperform agents
learning using unshaped G in terms of learning speed, av-
erage performance on system objectives, and quality of the
non-dominated solutions found. It has been theoretically
proven that applying PBRS in a MOMDP or MOSG does
not alter the true Pareto optimal set of solutions [14], al-
though no corresponding guarantees are yet available for D.
While applying PBRS does not alter the true Pareto front
of a MOSG, it may alter the Nash equilibrium reached by
the agents, and therefore different policies could be learned
compared to agents learning without PBRS. However, the
set of possible policies that could be learned and their Pareto
relation to one another remains consistent when PBRS is
applied. As with single-objective SGs, PBRS affects the
agents’ exploration, and therefore the quality of the heuris-
tic information used determines how successful a particular
PBRS application will be.

None of the above works empirically evaluated the effect of
these shaping approaches in a MOSG where the true Pareto
optimal solutions are known, or considered if it is possible in
practice for agents to sample true Pareto optimal solutions
under such reward transformations. The experimental work
in this paper will address this gap in the current literature.
Next, we will discuss the theoretical properties of D when
applied to MOSGs.

3.2 Difference Rewards Theory
Recent work by Colby and Tumer [5] considered the effect

of applying D in a two-player single objective matrix game,
and showed that the relative ordering of expected returns
(and therefore the Nash equilibria) are not altered when
agents are rewarded using D instead of G. In this section, we
generalise this result to the case of a co-operative Stochastic
Game with |C| ≥ 1 objectives and N agents.

Theorem 1. For any state s ∈ S in a co-operative Stochas-
tic Game, any property that depends on the relative ordering
of rewards is not altered when difference evaluations are used
in place of the system evaluation function.

Proof. For any state s ∈ S in a co-operative Stochastic
Game, the agents select some joint action a according to
their joint policy π, and are rewarded for this state transition



using the global system evaluation function G. If all agents
except agent i follow some joint policy π†−i ∈ Π−i, and agent
i follows some policy πi ∈ Πi, the resulting joint policy is
π†−i ∪ πi. Suppose that the reward for a system objective

c ∈ C is greater if agent i follows policy π1
i ∈ Πi rather

than π2
i ∈ Πi in state s when all other agents follow their

respective policies from π−i. Formally:

Gc(s, a
†
−i ∪ a

1
i ) > Gc(s, a

†
−i ∪ a

2
i ) (9)

where Gc(s, a) is the return from the system evaluation func-
tion for objective c when joint action a is selected in system
state s, a†−i are the actions selected in state s by all agents

except agent i when following their policies from π†−i, and

a1i and a2i are the actions selected by agent i when following
policy π1

i or π2
i respectively.

If we assume that each objective is to be shaped indepen-
dently (rather than shaping a scalarised combination) when
using difference evaluations, a counterfactual term must be
calculated for each objective c in order to apply Eqn. 3
to the global reward vector. However, as the counterfac-
tual term Gc(s−i ∪ sci , a†−i ∪ a

c
i ) for any objective c does

not depend on the policy being followed by agent i, for each
possible system state s we can infer that the counterfactu-
als for agent i must be a fixed quantity. Therefore, we can
add −Gc(s−i ∪ sci , a−i ∪ aci ) to each side of Eqn. 9 while
preserving the inequality:

Gc(s, a
†
−i ∪ a

1
i )−Gc(s−i ∪ sci , a†−i ∪ a

c
i ) >

Gc(s, a
†
−i ∪ a

2
i )−Gc(s−i ∪ sci , a†−i ∪ a

c
i )

(10)

Therefore, noting that the difference evaluation for objective
c for agent i is: Dc,i(si, ai) = Gc(s, a)−Gc(s−i∪sci , a−i∪aci ),
we have that:

∀c ∈ C, s ∈ S, i ∈ {1, ..., N}
[
Dc,i(si, a

1
i ) > Dc,i(si, a

2
i )

⇐⇒ Gc(s, a
†
−i ∪ a

1
i ) > Gc(s, a

†
−i ∪ a

2
i )
]
(11)

This means that D does not alter the order of rewards for
actions in any system state s, although it does alter the
absolute values. Any property that relies on the ordering of
rewards, and not the absolute value is therefore unaffected
for each system state s. For example, if an action ai in state
s leads to a Nash equilibrium reward with respect to G, it
also leads to a Nash equilibrium reward with respect to Di.
And, if an action ai in state s is Pareto optimal with respect
to G, it is also Pareto optimal with respect to Di.

4. MULTI-OBJECTIVE BEACH PROBLEM
DOMAIN (MOBPD)

4.1 Problem Description
In this section we introduce the MOBPD, a new multi-

objective Stochastic Game which will serve as a benchmark
problem for MARL algorithms. Up to now, the performance
of MARL algorithms in multi-objective problems has been
judged purely in relative terms, and we are unaware of any
MOSGs in the literature where the true set of Pareto opti-
mal solutions is known. Therefore the MOBPD will serve
as a useful benchmark for future evaluations, as MARL al-
gorithms can now be judged against a known absolute max-
imum level of performance, by comparing the hypervolume

Algorithm 1 MOBPD with G+ PBRS(Middle)

1: initialise Q-values: ∀s, a|Q(s, a) = 0
2: for episode = 1→ num episodes do
3: set initial agent positions
4: for timestep = 1→ num timesteps do
5: for i = 1→ num agents do
6: sense current beach section s
7: set potential Φ(s) (Eqn. 18)
8: choose action a, using ε-greedy
9: move agent to s′

10: set potential Φ(s′) (Eqn. 18)
11: end for
12: for all beach sections s ∈ S do
13: calc. local capacity reward Lcap(s) (Eqn. 12)
14: calc. local mixture reward Lmix(s) (Eqn. 14)
15: end for
16: calc. global capacity reward Gcap (Eqn. 13)
17: calc. global mixture reward Gmix (Eqn. 15)
18: for i = 1→ total agents do
19: set r = scalarised global reward (Eqn. 7)
20: set f (Eqn. 2)
21: set r′ = r + f
22: update Q(s, a) values using r′ (Equation 1)
23: end for
24: reduce ε using epsilon decay rate
25: end for
26: for i = 1→ num agents do
27: choose action a, using ε-greedy
28: move to absorbing state
29: set f = 0− Φ(s′) (Equation 2)
30: set r′ = 0 + f
31: update Q(s′, a) values (Equation 1)
32: end for
33: end for

of non-dominated solutions learned with the hypervolume of
the true Pareto front.

The MOBPD extends an earlier single-objective version
introduced by Devlin et al. [9], in a similar manner to Ylin-
iemi and Tumer’s multi-objective extension [36] to the El-
Farol bar problem [1]. In the MOBPD, each tourist (agent)
begins at a hotel on a specific beach section, and then decides
at which section of the beach they will spend their day. At
each timestep each agent knows which beach section s ∈ S
it is currently attending, and can choose to move to an ad-
jacent section (move left or move right), or to stay still.
Once all agents have completed their selected actions they
are rewarded. The agents must coordinate their actions to
maximise the social welfare or global utility of the system,
which is measured by two conflicting objectives: “capacity”
and “mixture”.

Each beach section has a certain capacity ψ, and the high-
est capacity reward for a section is received when the num-
ber of tourists (agents) present is equal to the capacity of
the section. Sections which are either too crowded or too
empty receive lower rewards as they are less desirable to the
tourists. The local capacity reward Lcap(s) for a particular
section is calculated as:

Lcap(s) = xse
−xs
ψ (12)

where s is the beach section (state), and xs is the number of
agents present at that section. The global capacity utility



can then be calculated as the summation of Lcap(s) over all
sections in the MOBPD:

Gcap =
∑
s∈S

Lcap(s) (13)

Each agent in the MOBPD is assigned one of two static
types: m or f . The maximum mixture reward for a section
is received when the number of m agents in attendance is
equal to the number of f agents, while sections with an
unequal mixture of agents receive a lower reward as they
are less desirable. The local mixture reward Lmix(s) for a
particular section is calculated as:

Lmix(s) =
min(|Ms| , |Fs|)

(|Ms|+ |Fs|)× |S|
(14)

where |Ms| is the number of agents of type m present at
that section, |Fs| is the number of agents of type f present
at that section, and |S| is the total number of sections in the
beach. The global mixture utility can then be calculated as
the summation of Lmix(s) over all sections in the MOBPD:

Gmix =
∑
s∈S

Lmix(s) (15)

The difference reward (Di) for an agent can be calculated
by applying Equation 3 for each objective. As an agent only
influences the capacity or mixture utility of the section it is
currently attending at a particular timestep, the utilities of
all other states cancel out, and Di may be calculated as:

Dcap,i(s) = Lcap(s)− (xs − 1)e
−(xs−1)

ψ (16)

Dmix,i(s) =

{
Lmix(s)− min(|Ms|−1,|Fs|)

(|Ms|+|Fs|−1)×|S| i ∈ m
Lmix(s)− min(|Ms|,|Fs|−1)

(|Ms|+|Fs|−1)×|S| i ∈ f
(17)

We take similar measures to those taken by Yliniemi and
Tumer [36] in order to ensure that the objectives are inde-
pendent and that no trivial solutions exist. Lmix is max-
imised when an equal number of agents attend the same
beach section; however we set odd values for ψ in our ex-
periments so that Lcap and Lmix cannot both be maximised
at the same time at any one section. We also ensure that
there are many more agents than available capacity in the
beach sections, and that the proportion of m and f agents is
not equal (we used 70% of type m and 30% of type f). The
maximum Gcap value is achieved when most of the agents
overcrowd one section, and exactly ψ agents attend each of
the other sections. This is in conflict with the maximum
Gmix scenario, where most of the agents overcrowd a sec-
tion, and exactly 1 agent of type m and 1 agent of type f
attend each of the remaining sections.

4.2 Applying MARL
We test agents using credit assignment structures L, G,

G+PBRS and D on this problem domain, as well as agents
that randomly select actions from a uniform distribution as
a baseline. In the case of L and G, the components of the
reward vector are first normalised (Eqn. 8) using the utopia
and nadir values given in Table 1, and then scalarised using a
linear combination (Eqn. 7). The normalised and scalarised
combinations are then used in the agents’ value function
updates (Eqn. 1).

In the case of D, first each objective is shaped sepa-
rately using its specific counterfactual value (Eqns. 16 and

Table 1: Normalisation constants
Experiment 1 Experiment 2

Lmincap 0.000 0.000
Lmaxcap 1.105 1.840
Lminmix 0.000 0.000
Lmaxmix 0.101 0.101
Gmincap 0.000 0.000
Gmaxcap 4.416 7.359
Gminmix 0.000 0.000
Gmaxmix 0.460 0.460
Dmin
cap -0.134 -0.136

Dmax
cap 0.718 0.820

Dmin
mix -0.034 -0.034

Dmax
mix 0.101 0.101

17). The resultant shaped reward vector is then normalised
(Eqn. 8) and scalarised (Eqn. 7) as above.

When applying PBRS, we first normalise (Eqn. 8) then
scalarise (Eqn. 7) the global reward vector, and then add the
shaping reward F (Eqn. 2) to the scalarised combination.
We apply the following two PBRS heuristics (adapted from
the work of Devlin et al. [9]):

• Middle: All agents are invited to a party at the mid-
dle beach section (s = 2). This heuristic incorpo-
rates some basic knowledge about the optimal trade-
off solutions, i.e. the idea that one resource should
be “sacrificed” or congested by most of the agents for
the greater good of the system. We expect that this
shaping will improve both the performance and learn-
ing speed of agents receiving PBRS, and will demon-
strate the effect of PBRS when useful but incomplete
domain knowledge is available.

Φ(s) =

{
1 if s = 2

0 otherwise
(18)

• Spread: The Spread heuristic encourages agents to
distribute themselves evenly across the sections in the
MOBPD. This is an example of a weak heuristic, and
demonstrates the effect of PBRS in cases where very
little useful domain knowledge is available. Therefore,
we expect agents receiving this shaping to show mod-
est if any improvements in learning speed and final
performance.

Φ(s) =



1 if s = 0, agent id ∈ [0, N/|S| − 1]

1 if s = 1, agent id ∈ [N/|S|, 2N/|S| − 1]

1 if s = 2, agent id ∈ [2N/|S|, 3N/|S| − 1]

1 if s = 3, agent id ∈ [3N/|S|, 4N/|S| − 1]

1 if s = 4, agent id ∈ [4N/|S|, 5N/|S| − 1]

0 otherwise

(19)
where N is the total number of agents.

4.3 Experimental Procedure
We present two different empirical studies in the MOBPD.

In the first experiment, we set ψ = 3, num agents M = 35
and num agents F = 15, while in the second experiment we
set ψ = 5, num agents M = 70 and num agents F = 30 in
order to increase the complexity. Changing the parameters



Table 2: MOBPD Pareto optimal system utilities
Experiment 1 Experiment 2

Soln. no. Gcap Gmix Gcap Gmix
1 4.107372 0.452381 5.362651 0.456522
2 4.134956 0.450000 5.819238 0.455556
3 4.162565 0.447368 6.275914 0.454545
4 4.190221 0.444444 6.732591 0.453488
5 4.217961 0.441176 7.189267 0.452381
6 4.239412 0.415315 7.199119 0.451220
7 4.267104 0.412381 7.208971 0.450000
8 4.288620 0.385965 7.218824 0.448718
9 4.316275 0.383333 7.228680 0.447368
10 4.337837 0.356410 7.231350 0.433012
11 4.365466 0.354054 7.241201 0.431852
12 4.414673 0.324561 7.251055 0.430633
13 7.260908 0.429351
14 7.273433 0.413659
15 7.283284 0.412500
16 7.293138 0.411282
17 7.315515 0.394321
18 7.325368 0.393165
19 7.357598 0.375000

in this way produces separate, independent versions of the
problem that each have a unique set of Pareto optimal sys-
tem utilities. The sets of Pareto optimal utilities for both
versions of the problem are listed in Table 2. These were de-
termined by calculating Gcap and Gmix for each possible dis-
tribution of m and f agents among the beach sections, and
then removing all dominated solutions. As the rewards for
both objectives are normalised in the range [0, 1], we found
that applying an even weighting of [0.5, 0.5] when scalarising
objectives produced the best results.

We set the number of sections to |S| = 5, and the first
num agents M/2 and num agents F/2 begin each episode
at beach section 1, while the rest begin at beach section
3. In all experiments, the number of episodes is set to
num episodes = 10000, the number of timesteps is set to
num timesteps = 1, the learning rate is set to α = 0.1, the
exploration rate is set to ε = 0.05 with epsilon decay rate =
0.9999 and the discount factor is set to γ = 0.9. These val-
ues were selected following parameter sweeps to determine
the best performing values.

All plots include error bars representative of the standard
error of the mean based on 50 statistical runs. Specifically,
we calculate the error as σ/

√
n where σ is the standard

deviation and n is the number of statistical runs. Error
bars are included on all plots at 1000 episode intervals. The
plots show the average performance across the 50 statistical
runs that were conducted at 10 episode intervals. All claims
of statistical significance are supported by two-tailed t-tests
assuming unequal variances, with p = 0.05 selected as the
threshold for significance.

4.4 Experimental Results & Discussion
The results for both experiments are summarised in Ta-

bles 3 and 4. These tables list the number of true Pareto
optimal solutions found across all runs (PO Solns.), the av-
erage hypervolume of the non-dominated solutions found on
each statistical run (Avg. HV), and the hypervolume of the
best non-dominated solutions found across all runs (Best
HV). Best HV gives an indication of how close an approach
can get to finding the true Pareto front of the problem, while

Table 3: Experiment 1 results
PO Solns. Avg. HV Best HV

True Pareto Front 12 1.980063
D 12 1.974039 1.980063
G+ PBRS(Mid) 10 1.826471 1.978657
G+ PBRS(Spr) 1 1.455105 1.856893
G 0 1.427198 1.853276
Random 0 1.377096 1.555496
L 0 1.187191 1.426849

Table 4: Experiment 2 results
PO Solns. Avg. HV Best HV

True Pareto Front 19 3.347111
D 16 3.322784 3.329418
G+ PBRS(Mid) 0 2.852388 3.238757
G 0 2.158390 2.474170
G+ PBRS(Spr) 0 1.966866 2.300028
L 0 1.939231 2.338821
Random 0 1.609211 1.849685

Avg. HV shows how consistent the performance of an ap-
proach is. Figs. 1 and 2 show the average performance on
the normalised scalarised global reward, while Figs. 3 and 4
show the average hypervolume of the non-dominated solu-
tions found on each run. The best non-dominated solutions
found by each approach over all runs, as well as the true
Pareto fronts are shown in Figs. 5 and 6.

We found that D offered the best overall performance in
both experiments, sampling all 12 Pareto optimal solutions
in the first experiment, and 16 of 19 in the second exper-
iment. G + PBRS(Middle) sampled 10 Pareto optimal
solutions in the first experiment, and none in the second.
G + PBRS(Spread) sampled a single Pareto optimal solu-
tion in the first experiment, and none in the second. Both
of the typical MARL credit assignment structures L and G,
as well as the random baseline failed to find any true Pareto
optimal solutions. This highlights the fact that in even the
simplest of multi-objective multi-agent problems, G alone
may not be sufficiently informative to allow agents to find
solutions that form part of the true Pareto optimal set.

Figs. 1 and 2 give an indication of the relative learning
speed of the different approaches, measured using the return
from the normalised scalarised system evaluation function.
We see that D again offers the best performance here, al-
though G+ PBRS(Middle) almost matches it in the early
episodes. As expected, L performs poorly here, as it does
not encourage all agents to act in the system’s best in-
terest. G + PBRS(Spread) performs poorly compared to
G+ PBRS(Middle); as is the case in single-objective SGs,
poorly designed potential functions with misleading infor-
mation can damage system performance.

In Figs. 3 and 4 we see that G+PBRS(Middle) samples
a lot of solutions that are close to the Pareto front in the
early stages of both experiments, resulting in a high hyper-
volume calculation, and initially beating the performance of
D. This demonstrates the beneficial effect that PBRS with
a suitable heuristic can have on the agents’ exploration. D
initially samples promising solutions more slowly, but by
the end of each experiment it has reached an average hyper-
volume very close to that of the true Pareto front (shown



Figure 1: Average performance on normalised
scalarised global reward (Experiment 1)

Figure 2: Average performance on normalised
scalarised global reward (Experiment 2)

with a black dashed line in both plots). In terms of aver-
age hypervolume reached, D offers statistically better per-
formance than G + PBRS(Middle) in both experiment 1
(p = 1.11 × 10−17) and experiment 2 (p = 2.67 × 10−29).
G + PBRS(Middle) does however offer a statistically sig-
nificant increase in performance over unshaped G on this
metric in the first experiment (p = 1.61 × 10−26) and the
second experiment (p = 6.79× 10−47).

Figs. 5 and 6 show that the best non-dominated solutions
found by D and G + PBRS(Middle) match very closely
with those of the true Pareto front in both experiments.
The solutions found by L and G are dominated by those
found by D and G + PBRS(Middle); these typical MARL
credit assignment structures are not informative enough to
guide agents towards good solutions in the MOBPD.

The performances of D and G+ PBRS(Middle) demon-
strate that well designed reward shaping techniques can guide
agents towards the true Pareto optimal solutions in MOSGs
by making G more informative. Thus the issue of appropri-
ate credit assignment is just as important in MOSGs as it is
in traditional single-objective SGs. Furthermore, the results
for D and G+PBRS(Middle) offer the first supporting em-
pirical evidence that both D and PBRS preserve the true
Pareto optimal sets of solutions in MOSGs. In the second
experiment, both approaches do not perform as well due
to the increased complexity of the problem. More sophisti-

Figure 3: Average hypervolume of non-dominated
solutions found (Experiment 1)

Figure 4: Average hypervolume of non-dominated
solutions found (Experiment 2)

cated scalarisation approaches may improve coverage along
the true Pareto front in more complex problems. In the case
of PBRS, more suitable heuristics could be designed to im-
prove performance, although G+ PBRS(Middle) performs
extremely well considering the simple nature of the informa-
tion that is provided.

While difference evaluations offered the best performance
across all metrics in both experiments, they suffer from some
notable limitations: global knowledge about the system state
and joint action must be available, and the precise mathe-
matical form of the system evaluation function G must be
known in order to calculate counterfactuals. Furthermore, D
requires us to make the assumption that a centralised mech-
anism is available to provide tailored feedback to individual
agents [4].

Therefore it is difficult to apply D in situations where
communication is limited, the system evaluation function is
not known, or where global state and action information is
unavailable, as may be the case in practice as MARL is ap-
plied to more complex MAS. Recent work by Colby et al. [4]
attempted to address these limitations by approximating the
counterfactual term in a single-objective context, giving an
estimated difference reward. However, estimating D in this
way does not provide any theoretical guarantees, and thus
may alter the Nash equilibria and Pareto optimal solutions
of a domain.



Figure 5: Best non-dominated episodes over all runs
(Experiment 1)

5. CONCLUSION & FUTURE WORK
In this work, we have evaluated the effectiveness of two

widely-used reward shaping methodologies for solving multi-
objective MARL problems. We discussed the theoretical
implications of applying these techniques in multi-objective
settings, and proposed the MOBPD, a new MOSG with
known sets of Pareto optimal solutions that will serve as a
useful benchmark for evaluating future MARL algorithms.
Our empirical work demonstrated that both PBRS and
D can improve learning speed and the quality of the non-
dominated set of solutions found in MOSGs, when compared
to agents learning using G alone. Crucially, this work also
demonstrated for the first time that agents learning using
these reward shaping techniques can sample true Pareto op-
timal solutions in MOSGs.

MORL is an emerging research area that will continue to
grow in importance, especially considering that many real
world problems exhibit conflicting objectives that must be
optimised. While there is a wealth of published work on
MARL for single-objective SGs, the same cannot be said for
MOSGs. Thus, there are numerous unanswered questions
and promising directions for future work on this topic.

Our work has shown that PBRS can improve perfor-
mance in MOSGs, even when very basic heuristic knowledge
is used. The question of how to design useful multi-agent
potential functions is an active area of research, and has not
been explored comprehensively in a multi-objective context
to date. Recent results [14] indicate that certain types of
PBRS heuristics can lead agents to discover policies that
favour one objective over another. Therefore, in future it
may be possible to use PBRS as a mechanism to incor-
porate user preferences in multi-criteria sequential decision
making problems, by designing potential functions that bias
an agent’s exploration appropriately.

To the best of our knowledge, only linear and hypervol-
ume scalarisation functions have been used with MARL to
date; these functions are quite basic and may not allow all
solutions along the Pareto front to be learned successfully.
Therefore, more advanced scalarisation functions such as
Chebyshev scalarisation [30] or Thresholded Lexicographic
Ordering [10, 29] could be used in conjunction with MARL
algorithms in future to improve coverage along the Pareto
front. Recent work in single-agent MORL has led to the
development of multi-policy algorithms such as Pareto Q-

Figure 6: Best non-dominated episodes over all runs
(Experiment 2)

learning [31], which can track multiple non-dominated poli-
cies at once; developing such algorithms in a MARL context
may also prove to be a fruitful direction for future work.

While we have considered two popular credit assignment
techniques in this study, numerous other promising meth-
ods exist. Difference Rewards incorporating Potential-Based
Reward Shaping [9] and Resource Abstraction [12] are two
recently proposed approaches that have proven to be effec-
tive in single objective MARL, and we intend to evaluate
their suitability for solving multi-objective problems in fu-
ture work.
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